Vis enkel innførsel

dc.contributor.authorMohamed Ahmed, Azza Hassan
dc.contributor.authorHicks, Steven
dc.contributor.authorRiegler, Michael
dc.contributor.authorElmokashfi, Ahmed Mustafa Abdalla
dc.date.accessioned2022-12-06T12:38:04Z
dc.date.available2022-12-06T12:38:04Z
dc.date.created2022-01-28T21:09:53Z
dc.date.issued2021-12-24
dc.identifier.citationIEEE Access. 2021, 9 168999-169013.en_US
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/11250/3036132
dc.description.abstractThe number of applications that run over mobile networks, expecting bounded end-to-end delay, is increasing steadily. However, the stochastic and shared nature of the wireless medium makes providing such guarantees challenging. Using several network interfaces simultaneously can help address fluctuating delays, provided that transport protocols can switch between them in a timely manner. Today’s protocols are mostly closed-loop and thus require at least one round trip before reacting to increased delay. This paper examines whether jumps in round trip times (RTTs) have a pattern that can be predicted beforehand. Using per second RTT measurements from hundreds of probes in two Long Term Evolution (LTE) cellular networks, we train an ensemble of classifiers to detect increases in delay. We construct a parsimonious explainable model that provides an accuracy of 80% and does not appear to be specific to a particular mobile operator. Further, we examine whether our model can be extended to 5G using a small dataset with extra 5G metadata, resulting in an accuracy of 88%. Our model indicates that RTTs are long-range correlated and shows that radio measurements of channel occupancy are accurate predictors of the onset of high delays. These results suggest that it is feasible to build an open-loop control system for multiplexing among several interfaces to proactively bound delays.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.ispartofseriesIEEE Access;Volume 9: 2021
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectDelaysen_US
dc.subjectPredictionsen_US
dc.subjectMachine learningen_US
dc.subjectLong term evolutionen_US
dc.subjectLTEen_US
dc.subject5Gen_US
dc.titlePredicting High Delays in Mobile Broadband Networksen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2021.3138695
dc.identifier.cristin1992955
dc.source.journalIEEE Accessen_US
dc.source.volume9en_US
dc.source.issue9en_US
dc.source.pagenumber168999-169013en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal