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ABSTRACT The number of applications that run over mobile networks, expecting bounded end-to-end
delay, is increasing steadily. However, the stochastic and shared nature of the wireless medium makes
providing such guarantees challenging. Using several network interfaces simultaneously can help address
fluctuating delays, provided that transport protocols can switch between them in a timely manner. Today’s
protocols are mostly closed-loop and thus require at least one round trip before reacting to increased
delay. This paper examines whether jumps in round trip times (RTTs) have a pattern that can be predicted
beforehand. Using per second RTT measurements from hundreds of probes in two Long Term Evolu-
tion (LTE) cellular networks, we train an ensemble of classifiers to detect increases in delay. We construct
a parsimonious explainable model that provides an accuracy of 80% and does not appear to be specific
to a particular mobile operator. Further, we examine whether our model can be extended to 5G using a
small dataset with extra 5G metadata, resulting in an accuracy of 88%. Our model indicates that RTTs are
long-range correlated and shows that radio measurements of channel occupancy are accurate predictors of
the onset of high delays. These results suggest that it is feasible to build an open-loop control system for
multiplexing among several interfaces to proactively bound delays.

INDEX TERMS Delay, prediction, machine learning, LTE, 5G.

I. INTRODUCTION
Guaranteeing low and stable end-to-end delay over mobile
networks is one of the key motivations for 5G. Ultra-reliable
low-latency communication is one of three use cases 5G is
envisioned to cater for [1]. Reliable latency is important for
supporting interactive applications such as hepatic control,
virtual and augmented reality, and critical applications such
as smart grid metering and public safety communication.

Delays can increase for a number of reasons, including
interference, handover, and congestion both in the radio and
beyond [2], [3]. New error correction mechanisms and novel
radio access strategies, such as the flexible numerology intro-
duced by 5G new radio [4], may help drive delay down [5].
However, addressing congestion and handover remains chal-
lenging because of the stochastic, shared and time-slotted
nature of the wireless medium.

Leveraging the availability of several radios per end
device has also emerged as a potential approach to bound
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performance unpredictability. Previous studies have shown
that network availability can be boosted to five nines by
connecting to two mobile operators simultaneously and the
throughput can be enhanced markedly [6], [7]. Several mul-
tipath transport protocols, such as Multipath Transmission
Control Protocol (MP-TCP) and QUIC multipath, are stan-
dardized to support the simultaneous use of multiple links [8],
[9]. These protocols use a scheduler that monitors the state
of each link in use before deciding which link to use next.
Similar to TCP, performance monitoring is essentially a
closed-loop that requires at least a single round trip, but often
several, before taking a qualified decision. Unfortunately, this
waiting time can be too long to meet the expectations of
delay-sensitive applications.

To address these limitations, we ask the simple question of
RTTs over mobile networks can be predicted by end devices.
We are not interested in the exact value of the RTT, but
rather whether it falls below or above a certain threshold.
Furthermore, the prediction should be based only on mea-
surements and metadata that are available to end devices, like
for example, signal strength. Accurate predictions can help

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168999

https://orcid.org/0000-0001-9605-4043
https://orcid.org/0000-0002-3153-2064
https://orcid.org/0000-0001-9964-214X
https://orcid.org/0000-0002-3966-2584


A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

TABLE 1. List of abbreviations.

transport protocols to short-circuit the closed control loop by
making local decisions instead of waiting for at least one RTT.

We leveraged end-to-endmeasurements andmetadata from
a large number of stationary probes connected to two mobile
operators over LTE. Then, we trained a number of machine
learning classifiers to verify whether delays could be reliably
predicted. We focused on stationary measurements because it
was the simplest scenario and thus succeeding in predicting
stationary delays is the first step towards scenarios with com-
plex mobility. Furthermore, many use cases with stringent
delay requirements are associated with low to no mobility
(e.g., smart meters). Interestingly, we found that a binary
ensemble classifier could accurately predict low and high
delay in 80% of the cases. In fact, the classifier also predicted
correctly 75% of the worst 10% of the RTTs. More impor-
tantly, the model is interpretable and transferable to other
network operators and requires minimal retraining to remain
effective over an extended period. Moreover, we tested our
classification model on a small 5G dataset of RTT measure-
ments and extra metadata. The model achieved an accuracy
of 88% for classifying the delays. Our findings can be readily
used to improve the performance of multipath protocols when
using several wireless links for bounding delays.

The rest of the paper is organized as follows: We present
our measurement data in Sec. II. We then discuss our
approach for predicting delays in Sec. III and present the
prediction results in Sec. IV. Sections V and VI dig deeper
into failed predictions and examine the prediction accuracy
over time. In Sec. VII, we investigate the performance of
our model on 5G data. We review related work in Sec. VIII.
The main findings are discussed in Sec. IX before concluding
in Sec. X

II. MEASUREMENT DATA
In this section, we describe our measurement setup, dataset,
and pre-processing steps.

We studied RTT measurements from a set of geograph-
ically spread stationary probes. These probes are part of

FIGURE 1. Measurement node. The red box encloses the single board
computer. The box also includes a smart power socket that can be
rebooted via SMS.

the NorNet Edge (NNE) platform, which is a country-wide
setup for measuring commercial mobile broadband networks
in Norway. The probe is a single-board computer that runs
Linux and connects to at least two mobile operators using
commercial off-the-shelf user equipment (UE) and subscrip-
tions. More specifically, we use the APU2 platform from PC
Engines (see Figure 1).1 Our board is equipped with a quad
core CPU, 4GB RAM and two miniPCI slots. To connect
to commercial mobile networks, we use the Sierra Wireless
AirPrime MC7455 miniPCI modem, which supports LTE
CAT 6 (LTE-advanced).2 The modem uses external antenna,
which are visible in Figure 1. To enhance the availability
of the nodes, we attach them to a smart power socket that
can be power-cycled remotely via SMS. Our probes conduct
end-to-end measurements to a set of well provisioned servers
that we control, these include delay, packet loss, and speed.
Figure 2 illustrates the measurement setup. An NNE node
connects to the Internet via commercial mobile subscriptions
and performs end-to-end measurements to the NNE backend.

In this study, we consider measurements from the two
largest mobile operators in Norway, which we refer to asOp1
and Op2 in the sequel. The probes measure RTTs by send-
ing a 20-bytes User Datagram protocol (UDP) packet every
second, over all available connections, to a well-provisioned
server that echoes it back. We focused on the RTT mea-
surements collected over LTE during September and October
2018. TheOp1 dataset includes more than 44.96 million RTT
data points from 79 probes, while the Op2 dataset includes
approximately 14.47 million data points from 77 probes. The

1https://www.pcengines.ch/apu2.htm
2https://www.sierrawireless.com/iot-solutions/products/mc7455/
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difference between the two datasets stems from the fact that
Op2 connections were on 3G for a non-trivial duration, and
this data had to be filtered out. At the time of the study, Op2
did not implement handover between radio access technolo-
gies while a UE was actively sending data, i.e. data sent by a
UE over 3Gwould not be handed over to 4G. Therefore, many
of the connections to Op2 were on 3G for an extended period
of time. Besides filtering out these periods, we removed
all instances where a probe underwent maintenance or the
NNE backend had issues. The NNE backend is connected to
the Internet via a well provisioned link through a research
and educational network. However, to avoid including times
where the measured RTTs were influenced by congestion in
the research and educational network, we filtered all mea-
surements where a large fraction of probes, across operators,
registered larger than usual RTTs.

In addition to the active measurements, the probes collect
connection metadata. These include radio and connectivity
parameters, which are listed below.

• Received signal strength indicator (RSSI) is a mea-
sure of the power received by the UE, including both the
signal and noise.

• Reference signal received power (RSRP) is a measure
of the power in the LTE reference signal and is averaged
over the entire bandwidth. RSRP is a more accurate
estimate of the received useful power.

• Reference signal received quality (RSRQ) is a mea-
sure of the quality of the received signal. A low RSRQ
often coincides with a loaded cell.

• Radio access technology (RAT) indicates mobile gen-
eration in use, that is, 2G, 3G, and 4G.

The metadata is collected every minute, as well as when-
ever there is a change.We associated every RTTmeasurement
with the closest past metadata value. Next, we removed all
RTT measurements without the corresponding metadata. The
removed fractions are 0.2% and 0.3% for Op1 and Op2,
respectively. Finally, we checked the sanity of the metadata
values and removed all RTT measurements that were associ-
ated with metadata values outside the correct value ranges,
that is, RSRP (−44dBm to −140dBm), RSRQ (−3dB to
−20dB), and RSSI (−6dBm to −100dBm).

III. PREDICTING ROUND TRIP DELAY
This section takes a closer look at our dataset and approaches
to predict delays.

A. RTT MEASUREMENTS
Figure 3 shows the distribution of RTTs for Op1 and Op2.
There were no clear differences between the two operators for
the bulk of the initial part of the distributions. Approximately
60% of the RTTs were within 50ms for both operators. The
picture, however, started to change as we look at the worst
20% RTTs with Op1 performing worse than Op2.
We are interested in investigating whether high delays, the

top 10%, can be predicted based on historical RTT values

FIGURE 2. Measurement setup [10].

and available high-level metadata about connection quality.
We intentionally avoid using cross-layer information such as
MAC layer scheduling decisions and physical layer reports.
This is because leveraging these in practice would require
complicated APIs that can communicate with the underly-
ing chipset, for example, the approach that tools such as
MobileInsight use [11]. Hence, our problem is a classical
forecasting problem, which may suggest that available time
series analysis techniques such as ARIMA can be a good
fit [12]. However, these methods base their prediction chiefly
on past values and patterns in the time series and do not
lend themselves easily to regularization, that is, adjusting
forecasting by incorporating side information about relevant
factors such as signal quality. Thus, machine learning (ML)
appears to be a viable alternative.

Figure 3 shows that attempting to predict high delays
means that we need to handle a heavily imbalanced dataset.
Specifically, we categorized the delays into low and high
using one threshold per operator, which is 80ms and 60ms
for Op1 and Op2, respectively. These thresholds are meant
to designate the top 10% delays as high, that is, our classes
have a relative ratio 9:1 by design. To prepare a balanced
dataset, we investigated both oversampling and undersam-
pling. We use the synthetic minority oversampling technique
(SMOTE), which applies a nearest neighbor algorithm to gen-
erate synthetic data for the minority class [13]. For the under-
sampling, we used the NearMiss algorithm, which removes
samples from the majority class. It removes values that are
close to the minority class to increase the spacing between the
two classes and avoid information loss [14]. Fitting a random
forest classifier, a supervised ensemble learning method [15],
and using both SMOTE and NearMiss to balance our data,
yields a comparable accuracy of ≈ 79%. We decided to
proceed with undersampling because it does not require the
use of synthetic data.

B. CLASSIFICATION ALGORITHMS
As explained above, our problem is essentially a classification
and prediction problem. To this end, we compare the perfor-
mance of four supervised classification algorithms, which are
listed as follows:

1) LOGISTIC REGRESSION (LR)
An interpretable binary classifier that uses a logistic function
to model the binary variable. However, it usually does not
perform well when the feature space is large [15].
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FIGURE 3. Distribution for RTT values for Op1 and Op2.

2) RANDOM FOREST (RF)
An ensemble-based learning algorithm that uses many deci-
sion trees to perform either classification or regression [15].
For classification, each decision tree makes an independent
prediction, which is then counted to produce the final output.
RF is quite robust, but offers less interpretability than LR.

3) LightGBM
A gradient-boosting framework is based on decision tree
algorithms [16]. Gradient boosting algorithms combine itera-
tively a number of weak learners into a single strong learner.
Similar to RF, LightGBM is less interpretable than LR.

4) ENSEMBLE
This approach combines the logistic regression, LightGBM,
and random forest classifiers into a single model [17]. Each
algorithm is trained separately. Then, a gradient-boosted deci-
sion tree is trained, based on the predictions from each algo-
rithm along with the input data. This allows for weighting the
contribution of each classifier, resulting in a combination that
is an improvement over the individual classifiers.

C. RELEVANT FEATURES
We used four groups of features to train the classifiers. The
guiding principle in picking these features is to limit our-
selves to features that can be readily available to applications
and minimize dependencies on cross-layer features. The four
groups comprise radio reception quality, diurnal, spatial, and
time-series effects.

1) RADIO RECEPTION FEATURES
These involve RSSI, RSRP and RSRQ.

2) DIURNAL EFFECTS FEATURES
The RTT exhibits a certain periodicity in both daily and
weekly patterns. To model these effects, we assign each RTT
measurement to the respective hour of the day and day of the
week.

FIGURE 4. Temporal auto-correlation for RTT at time lag = 0,5,10,..,30
seconds.

3) SPATIAL FEATURES
To account for the location of the probe (e.g., urban vs. rural),
we identified the coordinates of each probe and mapped
it to a (1km×1km) geographical unit that is provided by
the state [18]. We then found the population that resides
in each identified geographical unit. Based on the distribu-
tion of the population per geographic unit, we defined three
categories for this feature: (i) low (< 10,000), (ii) medium
(10,000-15,000) and (iii) high (> 15,000). These thresholds
were determined based on the distribution of the country’s
population.

4) TIME SERIES FEATURES
We examined whether the RTT time series exhibited autocor-
relation and long-range dependence [12]. Figure 4 shows the
autocorrelation function (ACF) for the RTT time series from a
sample connection at different lags in seconds. We recorded a
non-negligible autocorrelation that spreads over several lags.
The ACF became weaker for higher lags. While this may
be expected because the dataset is dominated by low RTTs,
it also indicates that high RTTs may have a serial pattern
to them. Therefore, we investigated whether previous RTTs
can help predict upcoming delays. To determine how long
we need to look back at time, we evaluated the correlation
between the current RTT and RTTs from the past 3, 5, 10, 15,
and 30s. Limiting ourselves to the past five seconds yielded
a reasonable accuracy.

D. APPROACH
We trained four classifiers, one per each of the above algo-
rithms, using one week worth of data from Op1. We applied
these algorithms using the implementations provided by
the Python library scikit-learn [19] and LightGBM [16].
We applied RF using a maximum of 600 estimators and
adjusted the weights proportionally to the class size. We used
K-fold (k= 5) cross-validation for the hyperparameters selec-
tion. Further, as for LightGBM, we used the gradient boosted
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TABLE 2. Values of accuracy and MCC for different classifiers.

decision tree algorithm with a learning rate of 0.01. Owing to
the large dataset size, we chose a larger learning rate to reduce
the required number of iterations.

We used the first week of September for training and
the second week for validation and evaluation. Furthermore,
we only focused on Op1 when fitting the model and used the
Op2 dataset to check whether the model generalizes to other
operators.

IV. PREDICTION PERFORMANCE
Wenow proceed to evaluate the performance of the aforemen-
tioned classification algorithms. To this end, we investigate
their general accuracy, as well as their efficacy in predict-
ing high delays and model transferability to other network
operators.

A. PREDICTION ACCURACY
We applied a number of metrics to compare the four classi-
fiers in use, which we summarize next.
• Accuracy.Ratio of correctly classified samples.We also
present the accuracy in the form of a confusion matrix.

• Receiver operating characteristic (ROC) curve.
A graphical measure of the separability of a binary
classifier as we vary the discrimination threshold.

• Precision-Recall curve. The plot describes the trade-off
between precision and recall for different thresholds.
A high area under the curve represents both a high
recall and high precision. This is more appropriate for
imbalanced datasets.

• Matthews correlation coefficient (MCC). A measure
of the correlation between the actual and predicted
samples [20]. Unlike other metrics, MCC is symmetric
because it assigns all classes equal importance.

In our evaluation, the true positives (TPs) are the cor-
rectly classified high-delay samples. True negatives (TNs) are
the correctly classified low-delay samples. The false posi-
tives (FPs) are the incorrectly classified low-delay samples.
Finally, false negatives (FNs) are the samples incorrectly
classified as high-delay.

Table 2 presents the prediction accuracy and MCC of the
four classification algorithms. The ensemble, random forest,
and lightGBM outperformed logistic regression by a clear
margin. The MCC confirms that the results of the ensem-
ble and random forest correlate well with the actual classes
across the board. The ensemble model achieved a very good
accuracy compared to the closest related work by khatouni et.
al [21], which achieved an accuracy of 67% when applying
DT using the same features defined by the authors.We believe

that the lower accuracy of [21] is due to having neglected the
effect of historical data in their model.

The ROC curves and the respective area under the
curve (AUC) values in Figure 6 further confirm the above
observations for a range of thresholds. The ensemble clas-
sifier outperformed all the other three classifiers, with an
AUC value of 0.88. The random forest classifier had an AUC
of 0.87. The corresponding values for the lightGBM and
logistic regression are 0.84 and 0.69, respectively. Moreover,
as expected the precision-recall curves in Figure 7 show
similar results.

The confusion matrices for the four classifiers (see
Figure 5) further confirm that the ensemble and random
forest predict both the TPs and TNswith reasonable accuracy,
although the performance is marginally worse when predict-
ing high delays. The ensemble classifier correctly predicted
75% of the high-delay samples. Although this is a relatively
good accuracy, we need to investigate whether the model can
accurately predict high jumps in delay, as these have the worst
impact on end-to-end performance.

B. FEATURES IMPORTANCE
To gain more insight into our model, we identify the features
that contribute the most to the decision-making of the model.
Figure 8 presents the top 10 features, along with their impor-
tance. Historical RTTs, taking the first five spots, play the
most important role. Additionally, the network features RSSI,
RSRP, and RSRQ contribute to discriminating features in the
model. We evaluated our model when relying on historical
RTTs only; the ARIMAmodel used a lag order of 5, resulting
in 63% accuracy. Therefore, a model that uses only historical
RTT data (e.g., moving average, exponential smoothing, and
ARIMA [12]) does not work well. Our model also exhibits
some spatial dependencies through the population feature
based on the probe location.

C. MODEL ACCURACY PER PROBE
We now break down our analysis of accuracy per probe,
which should provide a more fine-grained idea about the
failure of the model. Figure 9(a) depicts the fraction of FNs
per each probe, which is the fraction of high delays that
are incorrectly predicted. We observed marked differences
between the probes. While a sizable majority had an FN
rate below 0.1, eight probes had a rate over 0.3. How-
ever, there are fewer variations in FPs across probes (see
Figure 9(b)), with accuracy below 0.2 for almost all probes.
To gain insights into the high variability in the FN rate,
we compared the distribution of the number of consecutive
seconds with high delays for the two probes with the highest
(probe 8) and lowest (probe 12) FN rates. This comparison
is motivated by the fact that past RTT values are the most
central features. The results show that the node with the
lowest FN rate suffers longer periods with high delays as
opposed to the node with the highest FN rate. Here, 90% of
high-delay episodes last two seconds or shorter. Furthermore,
probes with higher FN rates are generally characterized by
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FIGURE 5. Confusion matrix for four classifiers.

FIGURE 6. Comparative evaluation of four classifiers based on ROC curve and AUC.

lower delays and less variations in delay, whereas those with
medium and lower FN rates suffer higher delays. Accord-
ingly, the classifier fails to predict on-off hikes in delay
but performs well for connections with a challenging delay
profile.

D. MODEL TRANSFERABILITY
Many machine learning models are limited to a specific con-
text, which necessitates building new models as the context
changes. Hence, an important question is whether our clas-
sifier is transferable to other network operators. To verify
this, the model was used to predict delays for probes from

the second operator Op2 in our dataset, while training it on
data from Op1. Note that all the results above are for Op1.
A blind application results in a poor accuracy of 63%. The
main reason for the performance degradation is that the two
operators have different delay profiles (see Figure 3). Recall
that Op2 exhibits lower delays with 90% of RTTs lower
than 60ms, while the corresponding number for Op1 is 80ms.
Accordingly, when we changed the threshold that separates
low and high delay for Op2 to 60ms, the accuracy of the
model increased to 81%, which is similar to the Op1’s case.
Figure 10 shows the prediction recall and ROC curves for
Op2, which closely match the corresponding plots for Op1.
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FIGURE 7. Comparative evaluation of four classifiers based on Precision-Recall curve and the average precision.

FIGURE 8. Top 10 important features using random forest.

This shows that the model is transferable once it is adjusted
to the profile of the new operator.

Takeaways. A simple machine learning classifier can
predict fairly well whether future delays will be over or
below a specific threshold. Our ensemble learning classifier
is accurate in 80% of the cases and is able to predict 75% of
high-delay instances. Recent RTTs, signal quality, and num-
ber of users are the most important discriminating features.
Furthermore, the accuracy of the model varies across probes

and is a function of the delay profile of the probe. The model
is more accurate for probes with high-delay episodes that last
longer. Finally, the model is transferable to other contexts that
require only minor adjustments.

V. DISSECTING AND INTERPRETING THE
MODEL PERFORMANCE
Having seen that high delays can be predicted with a reason-
able accuracy, we dig deeper into the misclassified instances.
Overall, our model misclassified 20% of the tested samples.
These include both the FPs and FNs, which we investigate
next. More specifically, we examine the high-importance
features of the misclassified samples in comparison with the
correctly predicted ones.

A. FALSE NEGATIVES
Recall that by FNs we refer to high delays that are incorrectly
predicted as low delays. This is approximately 25% of the
total high delays. Considering that historical RTT values are
the most important features in our model, we compared the
distribution of the previous 1-second and 2-second RTTs for
the FNs with those for the TPs. The left panel in Figure 11(a)
illustrates that the previous second RTT is evidently higher
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FIGURE 9. Distribution of false negatives and false positives per probe.

FIGURE 10. Prediction-recall curve and ROC curve for Op2.

for the TP case. The previous second RTT was in the low
category for 90% of FNs, as opposed to 70% of TPs. The right
panel shows that, unlike TPs, FNs are often followed by high
RTTs. We also compared the distribution of radio metadata
(i.e., RSSI, RSRP, and RSRQ) for FNs and TPs, which are
almost identical, indicating that differences in these features
do not offer further details to explain FNs.3

3We do not include the respective figures due to space limitations.

Recall from the previous section that FNs appear to
increase as the duration of high-delay episodes decreases.
To confirm this, we plotted the accuracy as a function of the
delay episode duration, as shown in Figure 12. The results
indeed confirm the earlier observations, our model predicted
only 57% of the high episodes of length one, i.e., spikes
and 63% of length two episodes. The accuracy continues to
improve as the duration of the high-delay episodes increases.
Accordingly, FNs have two characteristics: 1) they often
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appear after periods with low delay. That is, an FN sample
may be the first sample with a high delay, and 2) they belong
to delay episodes that are short.

Interestingly, our model still succeeds in predicting a con-
siderable fraction of delay episodes of lengths one and two,
which begs the question of what features help discriminate
these short delays. Looking at all features, we found that the
RSRQ is the most important discriminator.

Figure 13(a) compares the RSRQ distribution for the cases
of length one. The TPs were evidently associated with worse
RSRQ. We refer to RSRQ values as good or bad according to
LTE RSRQ mapping table defined by 3GPP in [22]. We also
analyzed high-delay episodes that lasted for two seconds.
Here, we have four cases: 1) both delay samples are pre-
dicted correctly as high and they contribute to the true pos-
itives, 2) both delay samples are predicted incorrectly as low,
3) the first sample is predicted correctly and the other one
is not and 4) lastly the second sample is predicted correctly,
and the first one is not. For the first case, both samples
have relatively low RSRQ values (see Figure 13(b)), which
drives the model to predict them correctly as high. In the
second case, both samples have a good or fair RSRQ value
(see Figure 13(c)). For case three, both RSRQ values are
relatively low, which explains why the first sample is pre-
dicted correctly (see Figure 13(d)). Finally, for the fourth
case, the RSRQ values are higher for the first sample than
for the second one (see Figure 13(e)). These results indicate
that RSRQ reliably contributes to flag short delay episodes.
A worse RSRQ is indicative of a congested cell. To confirm
this, we break the correctly predicted high delays that belong
to short episodes of lengths one and two, down to per hour of
day. Figure 14 shows this breakdown, where we can clearly
see that such delays tend to occur more at peak hours.

B. FALSE POSITIVES
Similarly, we investigated the FPs by examining the distribu-
tions of historical RTTs. The plots in Figure 11(b) compare
the past second and two seconds RTT for FPs and TNs.
We recorded a qualitative difference between FPs and TNs,
where a nontrivial fraction of FPs appears to follow high-
delay instances, that is, the previous second had a high delay.
Looking at the RTTs in the seconds that immediately follow
an FP, reveal that these seconds are often associated with low
delays.

Takeaways. Short-delay episodes are difficult to predict.
RSRQ helps identify short episodes that are likely to be
caused by congested cells. These amounts to 57% of the
episodes of length one. More frequent measurements, that
is, at a frequency less than 1s, can help in predicting false
negatives. In addition, the model struggles to demarcate the
ends of some delay episodes, resulting in false positives.

VI. MODEL STABILITY AND NEED FOR RETRAINING
As machine learning-based models are trained on data col-
lected from the past, they often degrade over time owing
to external changes in the environment. Model degradation

is often rectified through a system for retraining, that is,
keeping the model up to date through training on the data
collected during production. In this section, we investigate
whether our model remains stable over time and how to
rectify performance degradation, if any. Figure 15 shows the
performance of an ensemble model trained on the first week
of September 2018, which was then tested on data for the
following sevenweeks, which is the second half of September
and the whole of October. The graph shows a clear trend
of performance degradation, where the accuracy drops from
73% to 68%. Hence, it is necessary to retrain the model.

To gain insight into how a model may degrade over a small
period of time, we monitored the performance of a model
trained on the first week of September 2018 and deployed
over the following seven weeks. Figure 15 shows the results
for a model that was not retrained, a model trained every
week, and a model trained every day. Each retraining ses-
sion used data collected from the previous training session.
We observe that a model that does not perform any retrain-
ing exhibits a downward trend in performance. Retraining
every day shows an improvement over not retraining but
still has a downward slope. We believe this is because the
model does not have sufficient training data to accurately
represent day-to-day changes in mobile delay. Retraining
every week shows an improvement over retraining every day,
and now shows a slight upward trend in performance. The
experiments show that retraining a model helps stabilize the
performance but may still change from day to day due to
unforeseen circumstances. An example of such a change can
be seen on October 15th, where the network had a surge in
dropped packets and high delays due to the failure of a central
component.

Takeaways. The model performance degrades as time
progresses. As expected, retraining can help address this.
However, the retraining cycle must be adjusted to include all
important patterns in the underlying dataset. We found that a
modest weekly cycle performed fairly well.

VII. ARE HIGH DELAYS ALSO PREDICTABLE IN 5G?
In this section, we examine whether our ensemble classifier
can be extended to 5G.

A. DATASET
We collected RTT measurements, following a procedure
similar to that for 4G, using three measurement nodes that
connect to the newly launched sub-6GHz Non-Stand Alone
(NSA) 5G [23] service by Op1. These nodes connect to the
5G network using Huawei CPE Pro 2 [24] and commer-
cial subscriptions. Similar to the 4G nodes, the three nodes
were placed indoors in an urban environment. In addition
to active measurements, the probes collect the connection
metadata. The collected metadata involves the same 4G
metadata described in Section II and a set of extra meta-
data. The additional metadata include the modulation coding
schemes (MCS) in use (i.e., the number of bits that can be
sent in a resource block for both uplink and downlink [25]),
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FIGURE 11. The distributions of historical delay features (previous 1 second RTT and previous 2 seconds RTT values) for the false
negatives, true positives, false positives and true negatives.

FIGURE 12. Accuracy of the high delay episodes grouped by how long the
episode lasts.

the measured power on the physical uplink shared channel,
the physical uplink control channel, and the power of the
sounding reference signal. The MCS captures the quality
of the downlink, whereas the three power measures capture

the quality of the uplink. Measurements were conducted in
February 2020. After merging the RTT measurements with
metadata, we obtained a dataset containing 838,796 samples.

Figure 16 shows the RTT distribution for the 5G data Op1.
The top 10% RTTs, categorized as high delays, correspond
to RTTs exceeding 28ms. This is a major improvement over
4G. Note that the 5G NSA still uses the 4G core, albeit
with a flattened architecture. However, it deploys a different
air interface, that is, 5G New Radio. The measured network
delivers 5G NSA over a number of frequencies, but only
focuses on the commonly used 3.5 GHz frequency. The flat-
tened architecture and differences in the air interface explain
most of the savings in RTT [5].

B. PREDICTION ACCURACY
To verify whether high delays can be predicted equally well
on 5G as in 4G, we trained an ensemble classifier with three
weeks 5G data and tested it using a one-week dataset. Further,
we conducted two experiments: one using the same features
as for the LTE in Sec III and another using the extra metadata
as features. The first experiment resulted in an accuracy
of 83%, while the second experiment achieved an accuracy
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FIGURE 13. The distributions of RSRQ of high delay episodes of lengths one and two.

FIGURE 14. The diurnal pattern of short high delay episodes.

of 88%. Figure 17 shows the performance of the second
experiment. The model had high precision and an AUC close
to 1. From the confusion matrix in Figure 17(c), the model
can successfully predict approximately 85% of the high-delay
instances.

C. FEATURES IMPORTANCE
Figure 18 presents the top 15 features along with their impor-
tance for the 5G model. As for 4G, historical RTTs ranked
as the top five important features. Next comes the down-
link MCS and RSRP. Note that all the new features bring a
non-negligible contribution to the model.

D. MODEL TRANSFERABILITY TO 5G
In Sec. IV, we verified that the model is transferable between
operators in the case of 4G data. However, when we evaluated

the 4G model on 5G data, this resulted in a significant drop
in accuracy of 51%. Figure 19 shows the density plots for
4G data from Op1 and Op2, which are quite similar and
explain why the model is transferable between Op1 and Op2.
On the other hand, the density plot for 5G data for Op1
is completely different from the 4G data. Thus, the model
from 4G data cannot be used for 5G data. New models
should be trained on 5G data to achieve high prediction
accuracy.

Takeaways. The ensemble classifier works very well on
5G data, although the distribution of RTT values is very
different from that of 4G. The model accurately predicted
85% of the high-delay cases. Enhancing the set of features
increases the model accuracy from 83% to 88%, which is a
reasonable improvement.

VIII. RELATED WORK
Existing studies have explored several approaches for pre-
dicting delay. The authors in [26] discussed different RTT
prediction systems and classified them into three classes:
a) localisation measurement systems; which use direct RTT
measurements to form a structured overlay network to pre-
dict RTT, b) network coordinate systems; which use the
geometric space to position the actual RTT measurement in
order to predict RTTwithout direct measurement, and finally,
c) matrix factorisation systems; that solve a large distance
matrix in order to predict RTT. Further, they reviewed the
performance, robustness, and security of these system. In the
context of Internet, [27] surveyed some techniques for end-
to-end Internet delay prediction, including the time series
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FIGURE 15. The performance of three ensemble models trained on the first week of September 2018 and evaluated over the following seven weeks. One
model was not retrained over the evaluation period, one model was retrained every day, and one model was retrained every week.

FIGURE 16. Distribution for RTT values for 5G data.

approach, queuing theory, machine learning, and neural
networks. Time-series approaches using the autoregressive
moving average (ARMA) models have been widely used
to predict RTT. [28] presented an autoregressive eXogenous
(ARX) model to study the variations in end-to-end packet
delay on the Internet. Although, [28] succeeded in using the
ARX model to formulate the Internet delay dynamics as a
control engineering problem, [29] showed that the ARMA
model as a linear time-invariant model is not suitable for
predicting the Internet delay owing to the high variations in

delay. Further, [30] used amachine-learning technique known
as ‘‘Experts’’ framework to estimate the RTT, each of several
‘‘experts’’ provides an estimated value. Theweighted average
of these estimated values is used to estimate the final RTT,
with the weights updated after every RTT measurement.

Recently, deep learning methods that use historical data
have been increasingly used for network performance pre-
diction. In the context of delay prediction, [31], [32] used
recurrent neural networks (RNNs) to model and predict Inter-
net delays. Although RNNs have proved to be very help-
ful in understanding delay dynamics, the long training time
makes them unpopular for online prediction. To overcome
the long training time, [33] proposed a new RNN approach
with a minimal gated unit (MGU) to capture temporal fea-
tures of RTT and reduce the computing cost. The proposed
RNNs achieved a root mean square error (RMSE) of 1.543.
In addition, [34] presented a hybrid neuro-fuzzy approach
for client-cloud server communication round-trip time (RTT)
prediction, achieving an accuracy of 79.36%. [35] presented
a Markov model with two states to predict the probability
density function of RTT instead of the actual value in LTE
and WiFi networks. Also, [36] proposed a machine learning
regression model to predict RTT for TCP in LTE networks.
Then, they discussed how such a model can be used to enable
more reliable scheduling between multiple communication
paths in the field of automated vehicles. The above studies
used different datasets and different ways of formulating the
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FIGURE 17. Prediction-recall curve, ROC curve, and confusion matrix for 5G data.

FIGURE 18. Top 15 high important features using random forest for 5G
data.

FIGURE 19. Density plots for RTT values for 4G and 5G data.

problem of RTT prediction, which do not allow for direct
comparison of results. However, the approach proposed in
our paper is close to the work in [21], which used traditional
machine learning to predict the latency in mobile broadband
networks. [21] revealed that the use of SVM, DT, and LR
models to predict RTT in mobile broadband networks does
not show high efficiency. The results show that performance
of 71% (F1-score) when using DT. In our work, we improve
the machine learning model by using an ensemble of differ-
ent classifiers and incorporating historical RTTs as features.
Further, we investigate the model transferability to 5G and
identify the cases in which the model fails.

IX. DISCUSSION
We built an ensemble model that can predict the occurrence
of high delays with 75% accuracy in 4G data. With high
delays, we refer to the worst 10% delay. In the presence of
multiple network interfaces that connect to different inde-
pendent operators, the proposed model can be used to decide
which interface to use for sending the next packet (i.e., by a
protocol such as MPTCP or multipath QUIC). As a result,
we can ensure an RTT within 60ms or 80ms, depending
on the operator, for up to 97.5% of the time. This is a
marked improvement over the default of 90%. We extend
these results to 5G; by using extra metadata, we can predict
85% of the high delays. Our model captures the relationship
between the misclassified samples and the duration of the
high-delay episodes. High-delay instances that last for one
second are contributing to almost 50% of the high-delay sam-
ples that were incorrectly predicted. To improve the accuracy,
we need more fine-grained measurements (e.g., every 100ms)
for RTT to detect such short episodes. However, this implies
a trade-off between accuracy and measurement overhead,
which we would like to explore in future work.

We identified two key properties of such delays as side
products for predicting high delays. First, they tend to cluster
time, and second, a non-trivial fraction is related to congested
radio links. The clustered nature of high delays suggests
that applications with strict delay requirements may need
to consider multi-connectivity. A limitation of our model is
that it cannot be directly applied to mobility cases. Never-
theless, we believe that many use cases with stringent delay
requirements are stationary (e.g., smart meters and Industry
4.0) [1]. Delays for moving users are strongly influenced by
handovers and channel fading [37]. The handover decision
is highly controlled by RSRP and RSRQ levels [38]. It is
not clear whether only these features can accurately help in
predicting high delays under mobility. In the future, we plan
to investigate this issue.

For our model to be useful, it must be deployable on end
devices with relatively limited resources. This implies that
we cannot opt for deep learning approaches that perform
well in time-series prediction tasks such as recursive neural
networks (RNNs). Our model has the ability to recognize
temporal patterns without the need to manually craft complex
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high-level features. For example, when using random forest in
our first dataset training, the size of the single tree saved to the
hard drive is approximately 0.6 MB. The memory required
for neural network solutions depends on the total number of
parameters, gradient, and activation. Recently, [39] presented
a comprehensive assessment of the trade-offs between the
performance of various machine learning models for binary
classification datasets. Their results confirm that our selection
of traditional machine learningmethods can bemore effective
in terms of memory and CPU than deep learning-based neural
networks.

X. CONCLUSION
We empirically investigated whether RTTs in mobile broad-
band networks could be accurately predicted. Using measure-
ment data from a large number of probes, we found that a
binary ensemble learning-based model can accurately predict
delay classes 80% and 88% of the time for 4G and 5G,
respectively.

The model is both interpretable and transferable. Further-
more, the model does not require extensive retraining but
rather a modest retraining with a weekly cycle. However,
it struggles when predicting short delay episodes and, to a
lesser extent, by demarcating the end of a delay episode.
Despite this, the model performs fairly well. For example,
an application using it to anticipate high delays (i.e., the worst
10%) should be able to react positively to 75% of them when
using a 4G connection.

Our findings are encouraging and can help inform the
scheduling of multipath transport protocols that aim to bound
delays. Next, we plan to implement our model in a multipath
scheduler and investigate the means to improve the detection
of short-lasting delay episodes. In addition, we plan to explore
modelling scenarios with high mobility.
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