Show simple item record

dc.contributor.authorChoe, Insong
dc.contributor.authorCheong, Daewoong
dc.contributor.authorHitching, George Harry
dc.date.accessioned2021-06-07T11:14:55Z
dc.date.available2021-06-07T11:14:55Z
dc.date.created2021-05-21T11:45:13Z
dc.date.issued2021-05-19
dc.identifier.issn0129-167X
dc.identifier.urihttps://hdl.handle.net/11250/2758183
dc.description.abstractWe study the isotropic Quot schemes IQe(V ) parameterizing degree e isotropic subsheaves of maximal rank of an orthogonal bundle V over a curve. The scheme IQe(V ) contains a compactification of the space IQe◦(V ) of degree e maximal isotropic subbundles, but behaves quite differently from the classical Quot scheme, and the Lagrangian Quot scheme in [6]. We observe that for certain topological types of V, the scheme IQe(V ) is empty for all e. In the remaining cases, for infinitely many e there are irreducible components of IQe(V ) consisting entirely of nonsaturated subsheaves, and so IQe(V ) is strictly larger than the closure of IQe◦(V ). As our main result, we prove that for any orthogonal bundle V and for e << 0, the closure IQe◦(V ) of IQe◦(V ) is either empty or consists of one or two irreducible connected components, depending on deg(V ) and e. In so doing, we also characterize the nonsaturated part of IQe◦(V ) when V has even rank.en_US
dc.language.isoengen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.ispartofseriesInternational Journal of Mathematics;
dc.subjectOrthogonal vector bundlesen_US
dc.subjectCurvesen_US
dc.subjectIsotropic Quot schemesen_US
dc.titleIsotropic Quot schemes of orthogonal bundles over a curveen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.doihttps://doi.org/10.1142/S0129167X21500476
dc.identifier.cristin1911286
dc.source.journalInternational Journal of Mathematicsen_US
dc.source.pagenumber1-33en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record