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Abstract. We study the isotropic Quot schemes IQe(V ) parameterizing degree e isotropic

subsheaves of maximal rank of an orthogonal bundle V over a curve. The scheme IQe(V )

contains a compactification of the space IQ◦e(V ) of degree e maximal isotropic subbundles,

but behaves quite differently from the classical Quot scheme, and the Lagrangian Quot

scheme in [6]. We observe that for certain topological types of V , the scheme IQe(V ) is

empty for all e. In the remaining cases, for infinitely many e there are irreducible compo-

nents of IQe(V ) consisting entirely of nonsaturated subsheaves, and so IQe(V ) is strictly

larger than the closure of IQ◦e(V ). As our main result, we prove that for any orthogonal

bundle V and for e � 0, the closure IQ◦e(V ) of IQ◦e(V ) is either empty or consists of one

or two irreducible connected components, depending on deg(V ) and e. In so doing, we

also characterize the nonsaturated part of IQ◦e(V ) when V has even rank.

1. Introduction

Let C be a smooth projective curve of genus g ≥ 2 defined over C, and V a vector bundle

over C. We denote by Quotn,d(V ) the Quot scheme parameterizing subsheaves of V of rank

n and degree d. It contains an open subscheme Quot◦n,d(V ) consisting of subbundles. If V is

general (for example, if V is very stable), then for all n and d, all components of Quotn,d(V )

are smooth and of the expected dimension, and Quot◦n,d(V ) is dense in Quotn,d(V ). For

arbitrary V , however, Quotn,d(V ) may exhibit irregular behavior; some components may

have larger dimension than expected, and/or consist entirely of nonsaturated subsheaves.

The following fundamental result of Popa and Roth [16, Theorem 6.2 and Theorem 6.4]

shows that such irregularities disappear when d is sufficiently small.

Theorem 1.1. For 0 < n < rk (V ), there is an integer dn(V ) such that if d ≤ dn(V ), the

Quot scheme Quotn,d(V ) is irreducible and of the expected dimension, and a general point

corresponds to a subbundle of V which is a stable vector bundle.

In [6], an analogue of Theorem 1.1 was proven for symplectic bundles. A bundle W

over C is called L-valued symplectic if it admits a bilinear nondegenerate antisymmetric

form σ : W ⊗W → L for some line bundle L. A symplectic bundle W always has even

rank 2n. A subsheaf E ⊂ W is said to be isotropic if σ|E⊗E ≡ 0. An isotropic subbundle

(resp., isotropic subsheaf) of maximal rank 1
2rk (W ) is called a Lagrangian subbundle (resp.,
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Lagrangian subsheaf ). We denote by LQe(W ) the subscheme of Quotn,e(W ) parameterizing

Lagrangian subsheaves.

Theorem 1.2. ([6, Theorem 4.1]) For any symplectic bundle W over C, there is an integer

e(W ) such that for each e ≤ e(W ), the Lagrangian Quot scheme LQe(W ) is irreducible and

of the expected dimension, and a general point corresponds to a subbundle which is a stable

vector bundle.

The goal of the present article is to prove another analogue of Theorem 1.1, for orthogonal

bundles. An orthogonal bundle V is defined in the same way as a symplectic one, except

that the form σ is symmetric instead of antisymmetric. Note that an orthogonal bundle

may have odd rank. Again, any isotropic subsheaf has rank at most 1
2rk (V ).

Definition 1.3. Let V be an L-valued orthogonal bundle of rank r = 2n or 2n + 1. For

each integer e, we define the isotropic Quot scheme IQe(V ) by

IQe(V ) := {[j : E → V ] : E isotropic of rank n in V } ⊆ Quotn,e(V ).

The same argument as in [6, Lemma 2.2] shows that IQe(V ) is a closed subscheme of

Quotn,e(V ). We denote by IQ◦e(V ) the open subscheme consisting of saturated isotropic

subsheaves; that is, isotropic subbundles.

The symmetric form σ induces isomorphisms V
∼−→ V ∗ ⊗ L and det(V )2 ∼−→ Lr. In the

symplectic case, where r = 2n, we always have detV ∼= Ln (see [2]). However, if V is L-

valued orthogonal of even rank 2n then det(V ) can be any square root of L2n. It emerges

that V has an isotropic subbundle of rank n if and only if det(V ) ∼= Ln (Lemma 2.5). In

contrast, an orthogonal bundle of odd rank 2n + 1 always has an isotropic subbundle of

rank n (Lemma 2.7).

When nonempty, the schemes IQe(V ) still exhibit more complicated behavior than

Quotn,e(V ) and LQe(V ). In § 5 and § 8.2, we show that IQe(V ) has multiple components

consisting entirely of nonsaturated subsheaves, and that for r = 2n it is not equidimen-

sional, even for arbitrarily small e. We indicate three reasons for this behavior in the even

rank case which do not apply to Quotn,e(V ) or LQe(W ).

(i) If V admits a rank n isotropic subbundle, then the orthogonal Grassmann bundle

OG(n, V ) has two connected components (Proposition 2.12). When there are sec-

tions of both components defining subbundles of the same degree, IQ◦e(V ) cannot

be connected. (See [11, Theorem 5.3].)

(ii) Any two isotropic subbundles defining sections of the same component of OG(n, V )

have degrees of the same parity (Theorem 2.13). Thus a fixed component OG(n, V )δ

admits no sections corresponding to isotropic subbundles of degree e if e does not

have the appropriate parity. (In fact, if deg(L) is even, by [9, Theorem 1.2 (1)]

the locus IQ◦e(V ) of saturated subsheaves is empty for infinitely many e.) However,

by taking full rank subsheaves of a rank n isotropic subbundle, we can produce

nonsaturated isotropic subsheaves in IQe(V ) whose saturations are sections of either
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component of OG(n, V ). It follows that for infinitely many e, there are components

of IQe(V ) consisting entirely of nonsaturated isotropic subsheaves.

(iii) For fixed g, the expected dimension of a component of IQ◦e(V ) is given by

I(n, `, e) := −(n− 1)e− n(n− 1)

2
(g − 1− `)

where ` := deg(L) (Proposition 3.3). On the other hand, the locus of nonsaturated

subsheaves E of degree e which are contained in a fixed rank n isotropic subbundle

E of degree ē is parameterized by Quot0,e(E), which has dimension n(ē−e). Hence

the dimension of the nonsaturated locus of IQe(V ) is expected to exceed that of

the saturated locus for e � 0. (For comparison; for a symplectic bundle W , the

expected dimension of a component of LQ◦e(W ) is a linear function of e with slope

−(n+ 1); see [6, Proposition 2.4].)

Thus for rank 2n, we cannot expect IQe(V ) to be irreducible or equidimensional, even for

e� 0. However, the closure IQ◦e(V ) of IQ◦e(V ) in IQe(V ) is better behaved. Let w(V ) ∈ Z2

be the Stiefel–Whitney class of V , which will be discussed in § 2.3. The following are the

main results of this paper.

Theorem 1.4. Let L be a line bundle of degree `, and let V be an L-valued orthogonal

bundle of even rank 2n ≥ 4 and of determinant Ln. Then there is an integer e(V ) such

that:

(a) If ` is even, then for each e ≤ e(V ) with e ≡ w(V ) mod 2, the locus IQ◦e(V ) has two

nonempty connected irreducible components, both of which are generically smooth

of dimension I(n, `, e). Moreover, IQ◦e(V ) is empty when e 6≡ w(V ) mod 2.

(b) If ` is odd, then for each e ≤ e(V ), the locus IQ◦e(V ) is nonempty and irreducible,

and generically smooth of dimension I(n, `, e).

Theorem 1.5. Let V be an L-valued orthogonal bundle of rank 2n + 1 ≥ 3. There is

an integer e(V ) such that for each e ≤ e(V ) with e ≡ w(V ) mod 2, the locus IQ◦e(V ) is

nonempty, irreducible and generically smooth of dimension I(n+ 1, `, e− `
2).

In proving these results, we find a criterion for a nonsaturated isotropic subsheaf of an

orthogonal V of even rank to occur as a limit of isotropic subbundles. To state this, we

make a definition.

Definition 1.6.

(a) We say that a torsion sheaf τ on C is of type T if there is a filtration

0 = τ0 ⊂ τ1 ⊂ · · · ⊂ τk = τ,

where τi/τi−1
∼= Oxi ⊗ C2 for some xi ∈ C for 1 ≤ i ≤ k.

(b) We say that an element [E → V ] of IQe(V ) is of type T if either E ∈ IQ◦e(V ) or

the quotient E/E is of type T , where E is the saturation of E.

We show the following.
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Theorem 1.7. Let V be an orthogonal bundle of even rank 2n ≥ 4.

(a) If a point [E → V ] of IQe(V ) lies in the closure of IQ◦e(V ), then it is of type T .

(b) There is an integer e(V ) such that for e ≤ e(V ), every point [E → V ] in IQe(V ) of

type T lies in the closure of IQ◦e(V ).

Therefore by Theorem 1.4, the space IQTe (V ) of subsheaves of type T coincides with

IQ◦e(V ) for e ≤ e(V ), and provides a compactification of IQ◦e(V ) which behaves better than

IQe(V ). In this sense, the scheme IQTe (V ) can be considered a “correct” analog of the

Lagrangian Quot scheme LQe(W ) of a symplectic bundle W . Moreover, IQ◦e(V ) naturally

has a modular interpretation and inherits a universal family from Qn,e(V ), which may in

some situations be an advantage compared to compactifications of IQ◦e(V ) given by Hilbert

schemes or moduli of stable maps. In a forthcoming paper, we shall develop an intersection

theory on IQ◦e(V ) using Gromov–Witten invariants, as done for Lagrangian Quot schemes

in [5], with enumeration of maximal isotropic subbundles as an application.

Here is a summary of the paper. In § 2, we characterize those orthogonal bundles of rank

2n admitting a rank n isotropic subbundle, and study the orthogonal Grassmann bundles

of such V . From § 2.4 through § 7, we assume that rk (V ) = 2n ≥ 4, as the statements for

the odd rank case turn out to follow relatively easily from the even rank case.

In § 3, we find the expected dimension of IQ◦e(V ) and compute the Zariski tangent spaces

TEIQe(V ), including the case where E is not saturated. In § 4, we recall or prove some

facts on orthogonal extensions and principal parts, extending results in [14]. In § 5 we

describe the totally nonsaturated components of IQe(V ) and prove Theorem 1.7 (a). In

§ 6 we develop further results on orthogonal extensions, liftings and geometry in extension

spaces. These are applied in § 7 to prove Theorems 1.4 and 1.7 (b). In § 8 we discuss the

odd rank case, and prove Theorem 1.5.

The proofs of some (but not all) results in §§ 4, 6 and 7 are virtually identical to their

symplectic counterparts in [6, § 3]. We indicate where this is the case, and in some cases

we omit details.
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Notation. Throughout, C denotes a complex projective smooth curve of genus g ≥ 2. For

a vector bundle W over C, we write W |x for the fiber of W at x ∈ C. For a subsheaf

E ⊂ W , we denote by E the saturation, which is a vector subbundle of W . We write

Quotn,d(W ) for the Quot scheme parameterizing subsheaves [j : E → W ] of rank n and

degree d. A point [j : E → W ] ∈ Quotn,d(W ) may be denoted by [E → W ] or simply j or

E to ease notation. As a special case, for t ≥ 0, we denote by Elmt(W ) the Quot scheme

Quotrk (W ),deg(W )−t(W ) parameterizing elementary transformations [W ′ ⊂W ] where W/W ′

is torsion of length t.

2. Orthogonal bundles and isotropic subbundles

Definition 2.1. A vector bundle V → C of rank r is called an L-valued orthogonal bundle

if there is a bilinear nondegenerate symmetric form σ : V ⊗ V → L for some line bundle L;

equivalently, if there is a symmetric isomorphism V
∼−→ V ∗ ⊗ L.

2.1. Determinants of orthogonal bundles. If V is an L-valued orthogonal bundle of

rank r, then by the isomorphism V
∼−→ V ∗ ⊗ L, we have det(V )2 = Lr. It follows that if

r = 2n+ 1, then deg(L) is even.

If r = 2n, then det(V ) = η ⊗ Ln for some η of order two in Pic0(C), which may be

nontrivial. For example, the orthogonal direct sum V ∼= OC ⊥ η for a nontrivial η of

order two is an OC-valued orthogonal bundle with det(V ) = η. (In contrast, an L-valued

symplectic bundle of rank 2n always has determinant Ln; see [2, § 2].)

Remark 2.2. Note that V = OC ⊕ η also admits the η-valued quadratic form

((λ1, ν1), (λ2, ν2)) 7→ λ1ν2 + λ2ν1.

Thus in general L depends not only on the underlying vector bundle V , but also on σ.

Lemma 2.3. Let V be an L-valued orthogonal bundle of rank 2n with detV = η ⊗ Ln for

some η of order two in Pic0(C).

(a) If degL is even, then there is a line bundle M such that the twist V ⊗M−1 is an

OC-valued orthogonal bundle of determinant η.

(b) If degL is odd, then there is a line bundle M such that the twist V ⊗M−1 is an

OC(x)-valued orthogonal bundle of determinant η(nx) for some x ∈ C.

Proof. Choose a square root M of L and L(x) for (a) and (b), respectively. �

Lemma 2.4. Let V be an L-valued orthogonal bundle of rank 2n + 1. Then there is a

line bundle M such that the twist V ⊗M−1 is an OC-valued orthogonal bundle of trivial

determinant.

Proof. The line bundle M = Ln+1 ⊗ (detV )−1 satisfies the desired property. �
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2.2. Isotropic subbundles of orthogonal bundles. Let V be a bundle of rank r with

orthogonal form σ : V ⊗ V → L. We recall that a subsheaf E of V is called isotropic if

σ|E⊗E ≡ 0. Our focus will be on isotropic subsheaves of the maximal possible rank, which

by linear algebra is
⌊
r
2

⌋
. We write n :=

⌊
r
2

⌋
, so r = 2n or 2n+1. Not all orthogonal bundles

of rank 2n have isotropic subbundles of rank n, and we shall now characterize those which

do. Firstly, we recall the notion of an orthogonal Hecke transformations from [3, § 3].

Let V be an L-valued orthogonal bundle of rank 2n. Let Λ be an n-dimensional isotropic

subspace of a fiber V |x. Let Ṽ be the subsheaf of V of sections with values in Λ at x. This

is an elementary transformation

(2.1) 0 → Ṽ → V → Ox ⊗ Cn → 0.

By [3, Proposition 3.1], the bundle Ṽ is L(−x)-valued orthogonal, and clearly of determi-

nant det(V )⊗OC(−nx). We call Ṽ an orthogonal Hecke transformation of V .

Lemma 2.5. Let V be an L-valued orthogonal bundle of rank 2n. Then the following

statements are equivalent.

(1) V has an isotropic subbundle of rank n.

(2) det(V ) = Ln.

(3) There is a line bundle M such that either V ⊗M−1 or an orthogonal Hecke trans-

formation of V ⊗M−1 is an OC-valued orthogonal bundle of trivial determinant.

(4) There exists a nonempty Zariski open subset U of C together with a trivialization

V |U ∼= C2n × U such that the standard basis of C2n forms an orthonormal frame.

Proof. (1) ⇒ (2): Suppose V has a rank n isotropic subbundle E. Since E coincides with

its orthogonal complement E⊥, there is an exact sequence 0→ E → V → Hom(E,L)→ 0.

From this it follows that det(V ) = Ln.

(2) ⇒ (3): Using Lemma 2.3: If degL is even, then some twist V ⊗M−1 is an OC-

valued orthogonal bundle of trivial determinant. If degL is odd, some twist V ⊗ M−1

is OC(x)-valued orthogonal of determinant OC(nx), for some x ∈ C. Choose any n-

dimensional isotropic subspace Λ ⊂ (V ⊗ M)|x and consider the associated orthogonal

Hecke transformation

0 → ˜V ⊗M−1 → V ⊗M−1 → Ox ⊗ Cn → 0.

Then ˜V ⊗M−1 is OC-valued orthogonal of trivial determinant.

(3) ⇒ (4): Let V0 be an OC-valued orthogonal bundle of trivial determinant obtained

from V by tensor product and/or Hecke transformations as stated. Then we can find a

principal SO2n-bundle P0 whose associated vector bundle is V0. (In general, there are two

choices of P0, by [18].) As dim(C) = 1 and SO2n is connected, P0 is Zariski locally trivial

(see [17, 2.11]). In particular, we can find an orthonormal frame for V0|U for some Zariski

open subset U ⊆ C. Then for any line bundle M , any orthogonal Hecke transform V1 of

V0 ⊗M−1 inherits the orthonormal frame over U \ B for some finite set B. In particular,

V admits an orthonormal frame over a Zariski open subset of C.
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(4)⇒ (1): Given an orthonormal frame over a Zariski open subset U ⊆ C, we can choose

a rank n isotropic subbundle EU ⊂ V |U . As dim(C) = 1, we can extend EU to a rank n

isotropic subbundle E ⊂ V . �

Remark 2.6. This implies that if V is L-valued orthogonal of even rank and det(V ) =

η ⊗ Ln for η 6= OC , then V has no rank n isotropic subbundle. Let us see directly why

this slightly surprising fact holds in a special case. We consider again the orthogonal direct

sum V = OC ⊥ η for a nontrivial η of order two, with OC-valued quadratic form given by

((λ1, ν1), (λ2, ν2)) 7→ λ1λ2 + ν1 ⊗ ν2.

The locus of isotropic lines in PV is given by {(1 : ν/λ) : (ν/λ)⊗2 = −1}. Clearly this is

isomorphic to the étale double cover Cη → C determined by η. But since η is nontrivial, Cη

is irreducible, so the cover admits no section over any Zariski open subset of C. It follows

that OC ⊥ η has no line subbundle isotropic with respect to this choice of quadratic form.

The next two results show that isotropic subbundles exist in all remaining cases.

Lemma 2.7. Every orthogonal bundle V of odd rank 2n + 1 ≥ 1 admits an isotropic

subbundle of rank n.

Proof. By Lemma 2.4, there is a line bundle M such that the twist V ⊗M−1 is OC-valued

orthogonal bundle of trivial determinant. As in the case of even rank, the associated

SO2n+1-bundle is Zariski locally trivial and we can find an isotropic subbundle by choosing

a trivial isotropic subbundle over a Zariski open subset and extending it to C. �

Corollary 2.8. Every orthogonal bundle of rank 2n ≥ 4 admits an isotropic subbundle of

rank n− 1.

Proof. Let V be L-valued orthogonal of rank 2n and determinant η⊗Ln. As the property

of admitting an isotropic subbundle of rank n − 1 is preserved by Hecke transforms, we

may assume that deg(L) is even. Let M be a square root of L. Then the orthogonal direct

sum V ⊥ M is L-valued orthogonal of rank 2n + 1. By Lemma 2.7, we can find a rank n

isotropic subbundle F ⊂ V ⊥ M . Clearly F ∩ V contains an isotropic subbundle of rank

n− 1 in V . �

2.3. Stiefel–Whitney classes. Let V be an L-valued orthogonal bundle of rank r = 2n

or 2n + 1. If L = OC and det(V ) = OC , then V determines a principal SOr-bundle over

C (possibly up to a choice of orientation; see [18]). The Stiefel–Whitney class w2(V ) ∈
H2(C,Z2) is the obstruction to lifting this SOr-bundle to a Spinr-bundle. See [1, § 1].

Suppose now that ` = deg(L) is even. If r = 2n, suppose in addition that det(V ) = Ln.

Then by Lemma 2.3 and 2.4 there exists M such that V ⊗M−1 is OC-valued orthogonal

of trivial determinant.

Definition 2.9. Under the above assumptions, we define

w(V ) := w2(V ⊗M−1) +
n`

2
in H2(C,Z2) ∼= Z2.
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Clearly this is independent of the choice of M . It will emerge in Theorem 2.13 (a) and

Theorem 1.5 that w(V ) is the parity of the degree of any rank n isotropic subbundle of V .

2.4. Orthogonal bundles of rank two. Here we characterize L-valued orthogonal bun-

dles of rank two admitting an isotropic line subbundle. By Lemma 2.5, such a bundle must

have determinant L.

Proposition 2.10. Let V be a vector bundle of rank two with det(V ) = L. Then V has

an L-valued orthogonal structure if and only if V is a direct sum of two line subbundles.

Also in this case, the direct summands are isotropic subbundles.

Proof. Suppose V is L-valued orthogonal of rank two. For each x ∈ C, there are exactly

two points of PV corresponding to isotropic lines in V |x. Thus we get an étale double cover

π : C̃ → C. Since det(V ) = L, by Lemma 2.5 there is an isotropic line subbundle. This

gives a section of π, so π must be a split double cover. It follows that V is the direct sum

of two isotropic line subbundles.

Conversely, a decomposable bundle V of rank two and determinant L is necessarily of

the form N ⊕N−1L. Such a bundle admits the L-valued orthogonal form

((v1, w1), (v2, w2)) 7→ v1 ⊗ w2 + v2 ⊗ w1,

with respect to which N and N−1L are isotropic. �

In view of Proposition 2.10, it is easy to describe the isotropic Quot schemes of an

orthogonal bundle of rank two. Thus we shall henceforth assume r ≥ 3. Moreover, as

the results for the odd rank case will be derived from the even rank case in § 8, we shall

assume that V has rank 2n ≥ 4 until § 8.

2.5. Orthogonal Grassmann bundles. Let σ be a nondegenerate symmetric bilinear

form on C2n. The orthogonal Grassmannian OG(n, 2n) parameterizes linear subspaces of

dimension n in C2n which are isotropic with respect to σ. More geometrically; σ defines

a smooth quadric hypersurface in P2n−1, and OG(n, 2n) parameterizes projective linear

subspaces of dimension n− 1 contained in this quadric. The following well known fact will

be used several times.

Lemma 2.11. The orthogonal Grassmannian OG(n, 2n) has two irreducible connected

components. Two n-dimensional isotropic subspaces Λ1 and Λ2 belong to the same compo-

nent if and only if dim(Λ1 ∩ Λ2) ≡ n mod 2.

Proof. This is a restatement of [12, Proposition 2, p. 735]. �

For an L-valued orthogonal bundle V of rank 2n, we denote by OG(V ) the closed subvari-

ety of the Grassmann bundle Gr(n, V ) whose fiber at x ∈ C is the orthogonal Grassmannian

OG(n, V |x) ⊂ Gr(n, V |x).

Proposition 2.12. Let V be an L-valued orthogonal bundle of rank 2n satisfying the equiv-

alent conditions of Lemma 2.5. Then OG(V ) has two connected components.
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Proof. By hypothesis, V has a rank n isotropic subbundle. Let π : OG(V ) → C be the

projection. By Lemma 2.11, for each x ∈ C the fiber π−1(x) has two connected components.

A rank n isotropic subbundle gives a section of the fiber bundle π. Hence there are two

connected components of OG(V ), one of which contains that section and the other not. �

Theorem 2.13. Let V be as in Proposition 2.12.

(a) Suppose deg(L) is even. Then a section belonging to either component of OG(V )

defines a rank n isotropic subbundle of V whose degree has the same parity as w(V ).

(b) Suppose deg(L) is odd. Then two rank n isotropic subbundles E and E′ of V define

sections of the same component of OG(V ) if and only if deg(E) and deg(E′) have

the same parity.

Proof. (a) By Lemma 2.3 it suffices to consider the case where L = OC and det(V ) = OC .

This is proven in [9, Theorem 1.2 (1)].

(b) By Lemma 2.3 we may assume L = OC(x) and det(V ) = OC(nx) for some x ∈ C.

Choose an n-dimensional isotropic subspace Λ ⊂ V |x and let 0→ Ṽ → V → Ox ⊗Cn → 0

be the associated orthogonal Hecke transformation. Fix δ ∈ {1, 2}. If E ⊂ V is a rank n

isotropic subbundle with deg(E) ≡ δ mod 2, we have a diagram

0 // Ṽ // V // Cnx // 0

0 // Ẽ //

OO

E //

OO

Ckx //

OO

0

where k = n− dim(E|x ∩ Λ). Thus deg(Ẽ) = deg(E)− n+ dim(E|x ∩ Λ), so

dim(E|x ∩ Λ) ≡ deg(Ẽ) + δ + n mod 2.

Now since Ṽ is OC-valued orthogonal, by part (a) the number deg(Ẽ) is constant modulo

2. Hence the expression on the right is constant modulo 2 as E varies over the rank n

isotropic subbundles of V with deg(E) ≡ δ mod 2. By Lemma 2.11, the fibers E|x of all

such E belong to the same component of OG(V )|x. Therefore, all such E define sections

of the same component of OG(V ). �

Definition 2.14. We label the components OG(V )δ, where δ ∈ {1, 2}. When deg(L) is

even, we choose an arbitrary labeling, just to distinguish one from the other. When deg(L)

is odd, we denote by OG(V )δ the component containing the subbundles E with deg(E) ≡ δ
mod 2 (cf. Theorem 2.13 (b)).

In view of Lemma 2.5, for the duration of sections 3-7, we will assume that

det(V ) = Ln whenever we consider an L-valued orthogonal bundle V of rank 2n.

3. Isotropic Quot schemes

Let V be an L-valued orthogonal bundle of rank 2n. We shall now study the isotropic

Quot schemes IQe(V ) (Definition 1.3). We begin with another definition.
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Definition 3.1. For δ ∈ {1, 2} we write IQe(V )δ (respectively, IQ◦e(V )δ) for the locus

in IQe(V ) of subsheaves (respectively, subbundles) whose saturations define sections of

OG(V )δ.

Clearly IQe(V ) = IQe(V )1 t IQe(V )2, but still each IQe(V )δ may have several components.

3.1. Tangent spaces of isotropic Quot schemes. We now describe the Zariski tangent

space to the isotropic Quot scheme IQe(V ) at a point [E → V ] corresponding to a rank n

isotropic subsheaf E ⊂ V which need not be saturated. Let E be the saturation of E in V .

As E = E
⊥

, the quotient V/E is isomorphic to E
∗ ⊗ L. Then the torsion sheaf T := E/E

coincides with the torsion subsheaf of V/E. The dual elementary transformation gives a

sequence 0 → E
∗ ⊗ L → E∗ ⊗ L → T ′ → 0, where T ′ = Ext1(T, L) is (noncanonically)

isomorphic to T . This gives rise to a diagram

(3.1) H0(C,Hom(E, T )) �
� // H0(C,Hom(E, V/E)) // //

c **

H0(C,Hom(E,E
∗ ⊗ L))

� _

��
H0(C,Hom(E,E∗ ⊗ L))

��
H0(C,Hom(E, T ′))

We have now a generalization of [9, Lemma 4.3].

Lemma 3.2. Let V and E be as above. The Zariski tangent space to IQe(V ) at [E → V ] is

the inverse image of H0(C,∧2E∗⊗L) by the map c in (3.1). In particular, if E is saturated

then TEIQe(V ) ∼= H0(C,∧2E∗ ⊗ L).

Proof. Let α : E → V/E ∼= T ⊕ (E
∗ ⊗ L) represent a tangent vector to Quotn,e(V ) at

[E → V ]. Let U be a nonempty open subset of C containing no points of Supp(T ), so that

E|U = E|U as subbundles of V |U . Shrinking U if necessary, we may also assume that L|U
is trivial. Then V |U is an extension

0 → E|U → V |U → E∗|U → 0

and α|U defines a first-order deformation of [E|U → V |U ].

For each x ∈ U , the section α defines an element α(x) ∈ T(E|x)Gr(n, V |x), and the

deformation preserves isotropy of E|U if and only if

α(x) ∈ T(E|x)OG(n, V |x) ⊂ T(E|x)Gr(n, V |x),

for all x ∈ U ; that is,

(3.2) α|U ∈ H0(U,∧2E∗|U ) ⊂ H0(U,E∗ ⊗ E∗|U ).

As U contains no points of Supp(T ), the restriction α|U is canonically identified with c(α)|U
in (3.1). Therefore, since U is dense, (3.2) is equivalent to c(α) ∈ H0(C,∧2E∗ ⊗ L). �
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Now let E be any bundle of rank n and degree e, and L a line bundle of degree `. To

ease notation, we set

I(n, `, e) := χ(C,∧2E∗ ⊗ L) = −(n− 1)e− 1

2
n(n− 1)(g − 1− `).

Proposition 3.3. Let V be an L-valued orthogonal bundle of rank 2n.

(a) Any component of IQ◦e(V ) has dimension at least I(n, `, e).

(b) For any point [j : E → V ] ∈ IQ◦e(V ), if h1(C,L⊗∧2E∗) = 0 then IQ◦e(V ) is smooth

of dimension I(n, `, e) at j.

Proof. Using Lemma 3.2, parts (a) and (b) respectively are proven identically to [6, Propo-

sition 2.4 (a) and (c)]. �

Although we do not rely on this fact later, we would like to point out that the locus

IQ◦e(V ) behaves nicely if V is general in moduli. For simplicity, we restrict to the case of

trivial determinant.

Lemma 3.4. Let V be a stable OC-valued orthogonal bundle of rank 2n ≥ 4 and trivial

determinant. If V is general in moduli, then h1(C,∧2E∗) = 0 for all rank n isotropic sub-

bundles E of V . In particular, IQ◦e(V ) is empty if I(n, `, e) < 0, and smooth of dimension

I(n, `, e) otherwise.

Proof. We follow [4, p. 227]. Suppose E ⊂ V is a rank n isotropic subbundle. Let P be

a principal SO2n-bundle whose associated vector bundle via the standard representation

on C2n is V . The subbundle E defines a reduction of structure group of P to a maximal

parabolic subgroup Q stabilizing a fixed isotropic subspace of dimension n in C2n. A Lie

algebra computation shows that ∧2E is the associated bundle of the nilpotent radical of

Lie(Q). Thus, if h1(C,∧2E∗) 6= 0, then by Serre duality, h0(C,KC ⊗ ∧2E) 6= 0 and P

is not very stable. But then P is not general in moduli, by [4, Corollary 5.6]. Then the

smoothness statement follows from Lemma 3.2. �

4. Orthogonal extensions and principal parts

Let F be a vector bundle of rank n. An extension of vector bundles 0 → F → V →
F ∗ ⊗L→ 0 will be called an orthogonal extension if V carries an L-valued quadratic form

with respect to which F is isotropic. Similarly to the symplectic case [6], an orthogonal

extension is a key ingredient in the proof of Theorems 1.4 and 1.5. Here we recall or prove

various results on isotropic subbundles of such extensions.

Many of the proofs in this section are virtually identical to those in [6] of the correspond-

ing statements for symplectic extensions, so we shall sometimes omit details and refer to

the corresponding arguments in [6].

4.1. Principal parts. Recall that any locally free sheaf W on C has a flasque resolution

0 → W → Rat (W ) → Prin (W ) → 0,
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where Rat (W ) = W ⊗OC Rat (OC) is the sheaf of sections of W with finitely many poles,

and Prin (W ) = Rat (W )/W is the sheaf of principal parts with values in W . Taking global

sections, we have a sequence of Abelian groups

(4.1) 0 → H0(C,W ) → Rat (W ) → Prin (W ) → H1(C,W ) → 0.

Unpacking the definition of quotient sheaf, a principal part p ∈ Prin (W ) is determined by

an open covering {Ui : 1 ≤ i ≤ t} of C together with a rational section wi ∈ Rat (W )(Ui)

for each i; another choice of {w′i} determines the same element of Prin (W ) if and only if

wi − w′i is regular for each i. Clearly the cover may be assumed to be finite. Refining it if

necessary, we may assume that each wi has at most one pole. Further refining the cover

if necessary, we may choose a local parameter zi on Ui and a section ωi ∈ H0(Ui,W ) such

that wi = ωi

z
di
i

represents p|Ui . Abusing notation, we shall often write

p =
ω1

zd11

+ · · ·+ ωk

zdtt
.

Definition 4.1. Let F be any bundle of rank n. For a principal part

p =
ω1

zd11

+ · · ·+ ωm

zdmm
∈ Prin (L−1 ⊗ F ⊗ F ),

the transpose tp is the principal part represented by
tω1

z
d1
1

+· · ·+
tωk
zdmm

. Then p is antisymmetric

if tp = −p; equivalently, tpx + px is regular for all x; or p ∈ Prin (L−1 ⊗ ∧2F ).

Now any p ∈ Prin (L−1 ⊗ F ⊗ F ) defines naturally an OC-module map F ∗ ⊗ L →
Prin (F ), which we also denote by p. Suppose p is an antisymmetric principal part in

Prin (L−1 ⊗ ∧2F ). Following [15, Chapter 6], we define a sheaf V p over C by

(4.2) V p(U) := {(f, ϕ) ∈ Rat (F )(U)⊕ (F ∗ ⊗ L)(U) : f = p(ϕ)}.

It is not hard to see that V p is an extension of F ∗ ⊗ L by F . Let

〈 , 〉 : Rat (F )⊕ Rat (F ∗ ⊗ L) → Rat (L)

be the natural pairing. By an easy computation (see the proof of [14, Criterion 2.1] for a

more general case), the Rat (L)-valued quadratic form

(4.3) σ ((f1, ϕ1), (f2, ϕ2)) = 〈f2, ϕ1〉+ 〈f1, ϕ2〉

on Rat (F ) ⊕ Rat (F ∗ ⊗ L) restricts to a regular L-valued nondegenerate quadratic form

on V p with respect to which the subsheaf F is isotropic. Thus for each antisymmetric

principal part p ∈ Prin (L−1 ⊗ ∧2F ) there is a naturally associated orthogonal extension.

We now state a refinement of [14, Criterion 2.1], telling us that every orthogonal bundle

with a rank n isotropic subbundle can be put into this form.

Lemma 4.2. Let V be an L-valued orthogonal bundle of rank 2n admitting a rank n

isotropic subbundle F .
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(a) There is an isomorphism of orthogonal bundles ι : V
∼−→ V p for some antisymmetric

principal part p ∈ Prin (L−1 ⊗ ∧2F ) such that ι(F ) is the natural copy of F in V p

given by {(f, 0) : f ∈ F} = V p ∩ Rat (F ).

(b) The class of the extension 0 → F → V p → F ∗ ⊗ L → 0 in H1(C,L−1 ⊗ ∧2F )

coincides with [p].

Proof. This is identical to the proof of [6, Lemma 3.1] up to changes of sign. �

4.2. Maximal rank isotropic subbundles of a fixed extension. From (4.2), we obtain

a splitting Rat (V ) = Rat (F ) ⊕ Rat (F ∗ ⊗ L). This is a vector space of dimension rk (V )

over the field K(C) of rational functions on C. If β ∈ Rat (Hom(F ∗ ⊗ L,F )), we write

Γβ for the graph of the induced map of K(C)-vector spaces Rat (F ∗ ⊗ L) → Rat (F ). We

denote by Γβ the associated OC-submodule of Rat (F )⊕ Rat (F ∗ ⊗ L).

Proposition 4.3. Let p ∈ Prin (L−1 ⊗ ∧2F ) be any antisymmetric principal part. Let V p

be as in (4.2).

(a) There is a bijection between the K(C)-vector space Rat
(
L−1 ⊗ ∧2F

)
and the set

of rank n isotropic subbundles E ⊂ V p with rk (E ∩ F ) = 0. The bijection is given

by β 7→ Γβ ∩ V p. The inverse map sends a rank n isotropic subbundle E to the

uniquely determined β ∈ Rat (L−1 ⊗ ∧2F ) satisfying Rat (E) = Γβ.

(b) If E = Γβ ∩ V p, then projection to F ∗ ⊗ L gives an isomorphism of sheaves

E
∼−→ Ker

(
(p− β) : F ∗ ⊗ L→ Prin (F )

)
.

Note that
[
p− β

]
= [p] is the class of V p in H1(C,L−1 ⊗ ∧2F ).

(c) For a fixed p−β ∈ Prin (L−1⊗∧2F ), the set of rank n isotropic subbundles Γβ′∩V p

with β′ = β is a torsor over H0(C,L−1 ⊗ ∧2F ). In particular, it is nonempty.

Proof. Up to changes of sign, parts (a), (b) and (c) are proven identically to [14, Theorem

3.3 (i) and (iii)] and [6, Proposition 3.2 (c)] respectively. �

The following refinement of Lemma 4.2 allows us to choose convenient coordinates on V .

Lemma 4.4. Let F and E be rank n isotropic subbundles of V such that rk (F ∩ E) = 0.

Then there exists an antisymmetric principal part p0 ∈ Prin (L−1 ⊗ ∧2F ) and an isomor-

phism of orthogonal bundles ι : V
∼−→ V p0, such that

ι(E) = Γ0 ∩ V p0 = {0} ⊕Ker(p0),

where Γ0 = {0} ⊕ Rat (F ∗ ⊗ L) is the graph of the zero map Rat (F ∗ ⊗ L)→ Rat (F ).

Proof. This is identical to [6, Lemma 3.4] up to changes of sign. �

5. Components of isotropic Quot schemes in even rank

In this section, we give a first description of the irreducible components of IQe(V ). We

shall say that a locus in IQe(V ) is saturated if its generic point represents a subbundle of

V , and nonsaturated otherwise.
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5.1. Nonsaturated loci in even rank. Let V be an L-valued orthogonal bundle of rank

2n. For any E1 ∈ IQ◦e1(V ) and e < e1, any [E → E1] ∈ Elme1−e(E1) defines a point

[E → E1 → V ] of IQe(V ). However, the next theorem and corollary show that in general

such an [E → V ] does not lie in the closure IQ◦e(V ) of the saturated locus.

Theorem 5.1. Let V be an L-valued orthogonal bundle of rank 2n ≥ 4.

(a) Suppose that e < e1 and IQ◦e1(V ) is nonempty. For each irreducible component

Y of IQ◦e1(V ), let Y (e1, e) ⊆ IQe(V ) be the sublocus consisting of rank n isotropic

subsheaves whose saturations define points of Y . Then Y (e1, e) is irreducible and

dimY (e1, e) = dim(Y )+n(e1−e). Moreover, if Y contains a smooth reduced point,

then Y (e1, e) is an irreducible component of IQe(V ) which is generically smooth.

(b) The map Y (e1, e)→ Y defined by E 7→ E is projective.

(c) If Y and Y ′ are generically smooth irreducible components of IQ◦e1(V ), the corre-

sponding components Y (e1, e) and Y ′(e1, e) are equal if and only if Y ′ = Y .

Proof. (a) Let E be the restriction of the universal subsheaf of π∗CV → IQ◦e1(V ) × C to

Y × C. As E is a family of sheaves parameterized by Y , the relative Quot scheme

(5.1) Elme1−e(E) := Quotn,e(E) → Y

parameterizes rank n isotropic subsheaves of V of degree e whose saturations define points

of Y . By the universal property of Quot schemes, we obtain a morphism Elme1−e(E) →
IQe(V ), which is clearly injective with image Y (e1, e). Therefore,

dim (Y (e1, e)) = dim(Elme1−e(E)) = dim(Y ) + n(e1 − e).

Since the base and the fibers of Elme1−e(E)→ Y are irreducible, so is Y (e1, e).

Let us now show that Y (e1, e) is generically smooth and reduced, and moreover is not

contained in a component of higher dimension. All of this will follow if we can show that

dim (TEIQe(V )) = dim (Y (e1, e)) at a general point E ∈ Y (e1, e).

Consider, then, an elementary transformation 0→ E → E1 → T → 0 which is general in

the sense that E1 is a smooth, reduced point of IQ◦e1(V ) and T ∼= OD for a reduced divisor

D of degree e1 − e. As before, by dualizing we obtain 0 → E∗1 ⊗ L → E∗ ⊗ L b−→ T ′ → 0

where T ′ is noncanonically isomorphic to T .

By Lemma 3.2, the tangent space TEIQe(V ) is the preimage of H0(C,∧2E∗ ⊗L) by the

map c in the diagram

H0(C,E∗ ⊗ T ) �
� // H0(C,E∗ ⊗ V/E)

a // //

c ))

H0(C,E∗ ⊗ (E∗1 ⊗ L))

��
H0(C,E∗ ⊗ (E∗ ⊗ L))

IdE∗⊗b
��

H0(C,E∗ ⊗ T ′).
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As c factorizes via H0(C,E∗ ⊗ E∗1 ⊗ L)) and a is surjective, there is an exact sequence

0→ H0(C,E∗ ⊗ T ))→ TEIQe(V )→ Π→ 0,

where

Π = H0(C,E∗ ⊗ E∗1 ⊗ L)) ∩H0(C,∧2E∗ ⊗ L)

= Ker
(
H0(C,∧2E∗ ⊗ L)

IdE∗⊗b−−−−→ H0(C,E∗ ⊗ T ′)
)
.

Let us describe the kernel of the sheaf map

IdE∗ ⊗ b : ∧2 E∗ ⊗ L → E∗ ⊗ T ′.

At a point x ∈ Supp(T ), let ϕ1, . . . , ϕn be a local basis for E∗ such that the subsheaf

E∗1 is given by ϕ1, . . . , ϕn−1, zϕn for a local parameter z at x. Let l be a local generator

for L. Then T ′x is generated by b(ϕn ⊗ l), and Ker (bx : E∗ ⊗ L|x → T ′x) is spanned by

ϕ1 ⊗ l, . . . , ϕn−1 ⊗ l. For 1 ≤ i ≤ n− 1, we have

(IdE∗ ⊗ b)((ϕi ∧ ϕn)⊗ l) = ϕi ⊗ b(ϕn ⊗ l)− ϕn ⊗ b(ϕi ⊗ l) = ϕi ⊗ b(ϕn ⊗ l).

Hence (IdE∗ ⊗ b)(∧2E∗ ⊗ L) contains at least n− 1 independent elements of E∗|x ⊗ T ′x at

each of the e1 − e points x ∈ Supp(T ′). Therefore,

deg (Ker (IdE∗ ⊗ b)) ≤ deg(∧2E∗ ⊗ L)− (n− 1)(e− e1) = deg(∧2E∗1 ⊗ L).

Since clearly ∧2E∗1 ⊗ L is contained in Ker (IdE∗ ⊗ b), they must be equal. Therefore

dim(Π) = h0(C,∧2E∗1 ⊗ L) = dim(TE1IQ◦e1(V )).

As we have supposed Y to be smooth at E1, this coincides with dim(Y ). Thus, as desired,

dimTEIQe(V ) = dim(Y ) + n(e1 − e) = dim(Y (e1, e)).

(b) This follows from the projectivity of Qn,e(E) over Y (see e.g. [19, Theorem 4.4.1]).

(c) If Y (e1, e) = Y ′(e1, e), then we get Y = Y ′ by the saturation process. �

Corollary 5.2. Let V be an orthogonal bundle of rank 2n. Then for e1 > e, all nonempty

components of IQe(V ) of the form Y (e1, e) have dimension strictly larger than I(n, `, e).

Proof. For e1 > e, each nonempty component Y of IQ◦e1(V ) has dimension at least I(n, `, e1).

By Theorem 5.1 (a), therefore,

dimY (e1, e) ≥ I(n, `, e1) + n(e1 − e) = I(n, `, e) + e1 − e.

As e1 > e, this is strictly greater than I(n, `, e). �
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5.2. The closure of the saturated locus. Now we prove Theorem 1.7 (a), which gives

a necessary condition for [E → V ] ∈ IQe(V ) to be a limit of points in IQ◦e(V ). According

to Theorem 1.7 (b), it is also a sufficient condition for e sufficiently small, but the proof of

the latter will be postponed to § 6.

Recall the notion of torsion sheaves of type T given in Definition 1.6. Furthermore, if F

is any locally free sheaf, for t ≥ 1, we denote by T 2t(F ) the sublocus of Elm2t(F ) of those

[E → F ] such that F/E is of type T .

Lemma 5.3. Let F be a bundle of rank n ≥ 2.

(a) The locus T 2t(F ) is closed and irreducible in Elm2t(F ).

(b) A general E ∈ T 2t(F ) satisfies F/E ∼= OD ⊗ C2 for some reduced effective divisor

D, which may be taken to be general in C(t).

(c) The dimension of T 2t(F ) is t(2n− 3).

Proof. (a) Let 0 → E → F → τ → 0 be an elementary transformation as above. By

hypothesis, there is a filtration

0 = τ0 ⊂ τ1 ⊂ · · · ⊂ τt−1 ⊂ τt = τ

where τi/τi−1 = Oxi ⊗ C2 for 1 ≤ i ≤ t. Denoting by Ei the inverse image of τi in F , we

obtain a chain of subsheaves

(5.2) E = E0 → E1 → · · · → Et−1 → Et = F,

where Ei/Ei−1 = Oxi⊗C2 for each i. Thus it will suffice to construct a space parameterizing

chains of elementary transformations of the form (5.2) which is projective and irreducible.

The construction of [7, Lemma 4.2] can be modified in a natural way to yield such a space

as a tower of Grassmann bundles, substituting Gr(2,F∗k ) for PF∗k and det(U) for OPF∗k (−1),

where U → Gr(2,F∗k ) is the universal bundle. As this is technical but straightforward, we

omit the details.

(b) The association E 7→ 1
2Supp(F/E) defines a map T 2t(F ) → C(t), which is clearly

surjective. Hence

(5.3) {E ∈ T 2t(F ) : F/E ∼= OD ⊗ C2 for some reduced D of degree t}

is a nonempty open subset of T 2t(F ), being the complement of the inverse image of the

big diagonal of C(t) by the above map. By the irreducibility proven in part (a), it is dense.

Moreover, if E is sufficiently general in T 2t(F ) then D may be taken to be general.

(c) The set (5.3) is in canonical bijection with the set of t-tuples of points of the Grass-

mann bundle Gr(2, F ) lying over distinct points of C. As we saw in part (a) that T 2t(F )

is irreducible, dim T 2t(F ) = t · dim Gr(2, F ) = t(2n− 3). �

Suppose now that V is L-valued orthogonal of rank 2n, and that E and F are rank n

isotropic subbundles intersecting generically in dimension zero. Then by Lemma 2.11, the

dimension of E|x ∩ F |x is even for all x ∈ C. The following lemma slightly generalizes this

fact, and shows the relevance of the type T property for orthogonal extensions.
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Lemma 5.4. Let V be an L-valued orthogonal bundle of rank 2n ≥ 4. Suppose E and F are

rank n isotropic subbundles intersecting generically in rank zero, so that the composition

E → V
q−→ V/F ∼= F ∗⊗L is an elementary transformation. Then (F ∗⊗L)/E is of type T .

Proof. By Proposition 4.3 (a) and (b), there exists p ∈ Prin (L−1 ⊗ ∧2F ) such that E is

isomorphic to the locally free subsheaf of F ∗ ⊗ L given by

Ker (p : F ∗ ⊗ L→ Prin (F )) = {φ ∈ F ∗ ⊗ L : p(φ) is regular}.

Thus (F ∗ ⊗ L)/E ∼= Im (p : F ∗ ⊗ L→ Prin (F )). Let us describe Im (p).

By [9, Lemma 2.6], for each x ∈ Supp(p) there exists a frame f1, . . . , fn for F near x and

a local parameter z at x such that

px =
s∑
i=1

l∗ ⊗ f2i−1 ∧ f2i

zdi

for positive integers d1, . . . , ds with 1 ≤ s ≤ n/2, and l∗ a local generator for L−1. From

this we see that Im (px) =
⊕s

i=1 Ti, where Ti is the torsion sheaf generated over OC by
f2i−1

zdi
and f2i

zdi
. For 1 ≤ i ≤ s, we have a filtration

0 = zdi · Ti ⊂ zdi−1 · Ti ⊂ · · · ⊂ z · Ti ⊂ Ti.

For 0 ≤ j ≤ di − 1, the quotient
(
zj · Ti

)
/
(
zj+1 · Ti

)
is generated by the images of zjf2i−1

and zjf2i, so it is of the formOx⊗C2. Hence each Ti is of type T , and so Im (p) = (F ∗⊗L)/E

is of type T . �

Remark 5.5. It follows from the proof of Lemma 5.4 that for any p ∈ Prin (L−1⊗∧2F ∗),

the elementary transformation Ker(p) ⊆ F ∗ ⊗ L is of type T . The converse does not hold,

however: Consider the exact sequence

0→ OC(x)

OC
⊕ OC(x)

OC
→ OC(x)

OC
⊕ OC(x)

OC
⊕ OC(2x)

OC
α−→ OC(x)

OC
⊕ OC(x)

OC
→ 0

where the quotient map α is given by

α

(
a

z
,
b

z
,
c+ dz

z2

)
=
(a
z
,
c

z

)
.

Thus the middle term is a torsion sheaf of type T which is not of the form Im (p) for any

p ∈ Prin (L−1 ⊗ ∧2F ).

The following is a restatement of Theorem 1.7 (a).

Proposition 5.6. Let E → Z × C be a family of rank n isotropic subsheaves of V param-

eterized by an irreducible variety Z. Suppose that Ez is saturated in V for generic z ∈ Z.

Then for all z ∈ Z, the quotient Ez/Ez is of type T .

Proof. Fix z0 ∈ Z. If Ez0 is saturated, then there is nothing to prove. Suppose Ez0 6= Ez0 .

To ease notation, write Ez0 =: E.
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Choose p ∈ C \ Supp
(
E/E

)
, and set U := C \ {p}. As p is an ample divisor, U is affine,

so H1(U,L−1 ⊗ E⊗2
) = 0 by [13, Theorem III.3.7]. Hence

V |U ∼= E|U ⊕ (E
∗ ⊗ L)|U .

Let B := x1 + · · · + xk be the reduced divisor underlying Supp(E/E). For 1 ≤ i ≤ k,

choose an n-dimensional isotropic subspace Λi ⊂ V |xi intersecting E|xi in zero. (Notice

that by Lemma 2.11, all such Λi belong to the same component of OG(V ).) By linear

algebra, such a Λi is the graph of a unique antisymmetric map ωi : E
∗ ⊗ L|xi → E|xi for

all i. Since U is affine, we may assume h1(U,L−1(−B) ⊗ ∧2E) = 0. Thus there exists

ω ∈ H0(U,L−1 ⊗ ∧2E) such that ω|xi = ωi. The graph of ω is then a rank n isotropic

subbundle FU of V |U satisfying F |x∩E|x = 0 for each x ∈ Supp(E/E). As C is a curve, FU

extends uniquely to a rank n isotropic subbundle of V . Then V is an orthogonal extension

0→ F → V
q−→ F ∗ ⊗ L→ 0.

Shrinking Z if necessary, we may assume that rk (Ez ∩ F ) = 0 for all z ∈ Z. By Lemma

5.4, the elementary transformation q : Ez → F ∗ ⊗ L has a torsion quotient of type T for

all z in the open subset of Z such that Ez is saturated. As by Lemma 5.3 (a) the locus

T 2k(F ∗ ⊗L) is closed, it also contains the limit [q : E → F ∗ ⊗L], so (F ∗ ⊗L)/q(E) is also

of type T .

On the other hand, since E is an isotropic subbundle, (F ∗ ⊗ L)/q(E) is also of type T
by Lemma 5.4. Now there is an exact sequence

0 → E/E → (F ∗ ⊗ L)/q(E) → (F ∗ ⊗ L)/q(E) → 0,

where both F ∗ ⊗ L/q(E) and F ∗/q(E) are of type T . By the construction of F above,

Supp
(
(F ∗ ⊗ L)/q(E)

)
and Supp(E/E) are disjoint. Now clearly a torsion sheaf Σ is of

type T if and only if Tx is of type T for all x ∈ Supp(Σ). Therefore, E/E is of type T . �

Remark 5.7. In general, not every rank n isotropic subsheaf E ⊂ V with E/E of type

T need deform to an isotropic subbundle. For example, consider rank four OC-valued

orthogonal extensions 0 → F → V → F ∗ → 0 where F is a general stable bundle of rank

two and degree −1. For any x ∈ C, the elementary transformation F (−x) ⊂ F is a rank

n isotropic subsheaf of degree −3 with F/F (−x) of type T . However, if g ≥ 5 and the

chosen extension class for V is general, then by an argument similar to that in the proof

of [9, Proposition 3.3], there are no rank two isotropic subbundles of degree −3 in V .

However, we shall prove in § 7 that for sufficiently small e, every rank n isotropic subsheaf

E of degree e with E/E of type T does deform to an isotropic subbundle.

6. Orthogonal extensions and isotropic liftings

In this section, we study liftings in orthogonal extensions more closely. Some proofs are

essentially identical to the symplectic case treated in [6, § 3], but we include some details

for the reader’s convenience.

Let V be an L-valued orthogonal bundle isomorphic to an orthogonal extension 0 →
F → V p → F ∗ ⊗ L → 0 as defined in (4.2), and let 0 → E

γ−→ F ∗ ⊗ L → τ → 0 be
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an elementary transformation where τ is a torsion sheaf. Assume that there is a lifting

j : E → V . By Proposition 4.3, there exists a rational map β : Rat (F ∗ ⊗ L) → Rat (F )

such that E ⊆ Γβ ∩ V p ∼= Ker(p − β). The following result, generalizing Proposition 4.3

(c), provides the main idea to “linearize” the collection of rank n isotropic subsheaves of

V intersecting F generically in zero.

Lemma 6.1. The set of liftings of γ : E → F ∗ ⊗ L to isotropic subsheaves of V = V p is a

torsor over H0
(
C,Hom(E,F ) ∩ Rat (L−1 ⊗ ∧2F )

)
.

Proof. This is identical to [6, Lemma 3.8] up to changes of sign. Let us just indicate how the

intersection of Hom(E,F ) and Rat (L−1⊗∧2F ) is well defined. Since L−1⊗F
tγ−→ E∗ is an

elementary transformation, E∗ is a subsheaf of Rat (L−1⊗F ). Hence Hom(E,F ) = E∗⊗F
and Rat (L−1 ⊗ ∧2F ) are both OC-submodules of Rat (L−1 ⊗ F ⊗ F ). �

Motivated by Lemma 6.1, we define a sheaf Aγ as follows.

Definition 6.2. Let 0→ E
γ−→ F ∗⊗L→ τ → 0 be an elementary transformation defining

a point of Elmk(F ∗ ⊗ L) for some k ≥ 0. From the transpose F ⊗ L−1
tγ−→ E∗ we deduce

an elementary transformation L−1 ⊗ F ⊗ F → E∗ ⊗ F . We define Aγ to be the saturation

of L−1 ⊗ ∧2F in E∗ ⊗ F . Note that

Aγ = Hom(E,F ) ∩ Rat (Aγ) = Hom(E,F ) ∩ Rat (L−1 ⊗ ∧2F ).

We remark also that the definition of Aγ depends only on γ, and does not make reference

to an extension 0→ F → V → F ∗ ⊗ L→ 0.

Lemma 6.3. Let γ : E → F ∗ ⊗ L and Aγ be as above.

(a) There is a short exact sequence

(6.1) 0 → L−1 ⊗ ∧2F → Aγ → τ1 → 0,

where τ1 is a torsion sheaf. In particular, Aγ is locally free of rank 1
2n(n− 1).

(b) There is a short exact sequence

0 → Aγ → L⊗ ∧2E∗ → τ2 → 0,

where τ2 is a torsion sheaf.

(c) Suppose F ∗⊗L
E
∼= OD ⊗ C2 for a reduced D ∈ C(t). Then τ1

∼= OD. In this case,

deg(Aγ) = deg(L−1 ⊗ ∧2F ) + t.

Proof. Part (a) follows from the definition, and part (b) is identical to [6, Lemma 3.8 (b)],

substituting ∧2 for Sym2. As for (c): Since (F ∗ ⊗ L)/E ∼= OD ⊗C2, also E∗/(L−1 ⊗ F ) ∼=
OD ⊗ C2. At each x ∈ Supp(τ) = Supp(D), a local basis for E∗ ⊂ Rat (L−1 ⊗ F ) is

l∗ ⊗ v1

z
,
l∗ ⊗ v2

z
, l∗ ⊗ v3, . . . , l

∗ ⊗ vn,
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where {v1, . . . , vn} is a suitable local basis of F and l∗ is a local generator of L−1, and z is

a local parameter at x. Then a local basis of E∗ ⊗ F is given by{
l∗ ⊗ vi ⊗ vj

z
:

1 ≤ i ≤ 2;

1 ≤ j ≤ n

}
∪

{
l∗ ⊗ vi ⊗ vj :

3 ≤ i ≤ n;

1 ≤ j ≤ n

}
.

Thus a local basis of Aγ is{
l∗ ⊗ (v1 ∧ v2)

z

}
∪

{
l∗ ⊗ (vi ∧ vj) :

1 ≤ i < j ≤ n;

(i, j) 6= (1, 2)

}
.

Thus the torsion sheaf Aγ/
(
L−1 ⊗ ∧2F

)
is supported along D and has length 1 at each

point of D. Part (c) follows. �

Remark 6.4. In analogy with [6, Remark 3.8], we observe that part (c) may be false if D

is not reduced. Suppose for example that L = OC and that E∗/F ∼= OC(x)
OC ⊗ Λ for some

subspace Λ ⊆ F . Then there is an exact sequence 0 → ∧2F → Aγ → OC(x)
OC ⊗ ∧2Λ → 0.

Thus τ1
∼= Ox if and only if Λ has dimension 2.

Next, we discuss some geometry in orthogonal extension spaces which we shall require

later. Let F → C be a bundle of rank n, and consider the Grassmann bundle π : Gr(2, F )→
C. For the remainder of this section, we shall assume h1(C,L−1 ⊗ ∧2F ) 6= 0. By Serre

duality and the projection formula, there is an isomorphism

PH1(C,L−1 ⊗ ∧2F )
∼−→ |OP(∧2F )(1)⊗ π∗(KCL)|∗.

Composing with the relative Plücker embedding, we obtain a natural map

ψ : Gr(2, F ) 99K PH1(C,L−1 ⊗ ∧2F )

with nondegenerate image. This was studied in [9, § 2.2] and [11, § 3].

For each x ∈ C, there is a cohomology sequence

(6.2) 0 → H0(C,L−1 ⊗ ∧2F ) → H0(C,L−1(x)⊗ ∧2F )

→
(
L−1(x)⊗ ∧2F

)
x
→ H1(C,L−1 ⊗ ∧2F )

Now we recall an explicit description of ψ given in [9, § 2.2]. (The statement is for L = OC ,

but the argument for arbitrary L is identical.)

Lemma 6.5. The map ψ can be identified fiberwise with the projectivization of the cobound-

ary map in (6.2), restricted to the image of the Plücker map Gr(2, F |x) ↪→ P(L−1⊗∧2F )|x.

In particular, the image of Λ ∈ Gr(2, F |x) is the projectivized cohomology class of a princi-

pal part of the form l∗⊗v1∧v2
z , where v1, v2 are linearly independent elements of Λ and l∗ is

a local generator of L−1, and z is a local parameter at x.

Although we do not use this fact, we mention that if F is stable and µ(F ) < `
2 − 1, then

ψ is an embedding (see [9, Lemma 2.2 (1)] for the case where L = OC).

Now let σ1, . . . , σt be points of Gr(2, F ) lying over distinct points x1, . . . , xt of C respec-

tively. Let [γ : E → F ∗ ⊗ L] be the point of T 2t(F ∗ ⊗ L) determined by σ1, . . . , σt.
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Lemma 6.6. We have h1(C,Aγ) = 0 if and only if the points ψ(σ1), . . . , ψ(σt) span

PH1(C,L−1 ⊗ ∧2F ).

Proof. From the proof of Lemma 6.3 (c) we see that for 1 ≤ i ≤ t, there exists a local

parameter zi at xi together with local sections η
(1)
i and η

(2)
i of F and a local generator l∗i

for L−1 such that Aγ is the elementary transformation

0 −→ L−1 ⊗ ∧2F −→ Aγ −→
t⊕
i=1

OC ·
li ⊗ η(1)

i ∧ η
(2)
i

zi
−→ 0.

In view of Lemma 6.5, the lemma follows from the associated long exact sequence

(6.3) 0 −→ H0(C,L−1 ⊗ ∧2F ) −→ H0(C,Aγ) −→
t⊕
i=1

C ·
li ⊗ η(1)

i ∧ η
(2)
i

zi

−→ H1(C,L−1 ⊗ ∧2F ) −→ H1(C,Aγ) −→ 0. �

Remark 6.7. Suppose H0(C,L−1 ⊗ ∧2F ) = 0. Then by exactness of (6.3), we see that

H0(C,Aγ) is the module of linear relations among the points ψ(σi) in PH1(C,L−1⊗∧2F ).

7. The saturated components in the even rank case

Throughout this section, V will be an L-valued orthogonal bundle of rank 2n and deter-

minant Ln. In this section we shall prove the irreducibility result Theorem 1.4 for V . The

approach is essentially the same as in [6, § 4], but the proof is more delicate due to the

nonsaturated components described in the previous section.

7.1. Dominance of evaluation maps. For each x ∈ C, recall that the evaluation map

evx : IQe(V ) 99K OG(V |x) is the rational map taking an isotropic subsheaf to the image of

the vector bundle map E|x → V |x. The map evx is defined at E ∈ IQe(V ) if and only if E

is saturated at x.

Lemma 7.1. For δ ∈ {1, 2}, there exists an integer fδ such that evx : IQ◦fδ(V )δ → OG(V )δ|x
is dominant for general x ∈ C.

Proof. Since we are assuming det(V ) = Ln, by Lemma 2.5 there is a Zariski open subset U ⊆
C over which we have an orthonormal frame for V . Then also OG(V )|U ∼= U ×OG(n, 2n),

and we obtain a labeling of the components OG(n, 2n)δ induced from OG(V )δ.

Now each Λ ∈ OG(n, 2n) yields a rank n isotropic subbundle of V |U , so we obtain a

family of rank n isotropic subbundles of V |U . By an argument using [13, Lemma II.5.14],

this can be extended to a family {FΛ : Λ ∈ OG(n, 2n)} of rank n isotropic subsheaves of

V . For each δ, set

fδ := min
{

deg
(
FΛ

)
: Λ ∈ OG(n, 2n)δ

}
.

By semicontinuity (using the fact that the universal sheaf over any Quot scheme is flat),

deg(FΛ) = fδ for Λ belonging to a dense open subset of the component OG(n, 2n)δ. Then

ev : IQ◦fδ(V )δ → OG(V )δ|x is dominant for x ∈ U . �
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The following notation will be convenient for giving a unified treatment of all combina-

tions of parities of ` and n.

Definition 7.2. For δ ∈ {1, 2} and E ∈ IQe(V )δ, let δ′ ∈ {1, 2} be such that the component

OG(V )δ′ contains those subspaces intersecting a generic fiber of E in dimension zero. By

Lemma 2.11, we have δ′ ≡ δ + n mod 2. Note also that (δ′)′ = δ.

7.2. Open cells in isotropic Quot schemes. Following the treatment of the symplectic

case in [6, § 3], we shall now associate to any rank n isotropic subbundle of V a cell in

IQe(V ).

Definition 7.3. For any rank n isotropic subbundle F ⊂ V , we define

QeF := {E ∈ IQe(V ) : rk (E ∩ F ) = 0 and E/E is of type T }.

Note that QeF also depends on the particular inclusion F ↪→ V , but it will not be necessary

to specify this in the notation. If QeF is nonempty then, by Definition 7.2, we have the key

property that QeF ⊆ IQe(V )δ if and only if the subbundle F belongs to OG(V )δ′ .

Lemma 7.4. Suppose e ≤ fδ and e ≡ fδ mod 2. Then QeF is nonempty.

Proof. If e = fδ then by Lemma 7.1 we can find an isotropic subbundle E1 ⊂ V of degree

fδ such that E1|x ∩ F |x = 0 for some, and hence for generic x ∈ C, so E1 ∈ QfδF . If e < fδ

then, as e ≡ fδ mod 2, the locus T fδ−e(E1) is nonempty and injects naturally into QeF . �

We now introduce an important tool for studying QeF . Given [j : E → V ] ∈ QeF , by

composing with π : V → F ∗⊗L we obtain an elementary transformation π◦j : E → F ∗⊗L.

This defines a morphism π∗ : QeF → Elm−e−f+n`(F ∗ ⊗ L), where f := deg(F ). We write j̃

for the map π ◦ j.

Lemma 7.5. Let F ⊂ V be as above, and let δ ∈ {1, 2} be such that F belongs to OG(V )δ′.

(a) For any E ∈ QeF , the elementary transformation j̃ : E → F ∗ ⊗ L is of type T . In

particular, QeF is nonempty only if −e− f + n` ≡ 0 mod 2.

(b) If X is a component of IQe(V )δ whose generic element is a saturated subsheaf, then

QeF is open in X.

Proof. (a) Firstly, E/E is of type T by definition of QeF . Write j for the natural extension

of j to E → V . Then F ∗⊗L(
j̃
)

(E)
is of type T by Proposition 5.6. Now it is easy to check that

an extension of torsion sheaves of type T is of type T . Hence the first statement follows

from the short exact sequence

0 → E

E
→ F ∗ ⊗ L

j̃(E)
→ F ∗ ⊗ L(̃

j
) (
E
) → 0.

For the rest; as a torsion sheaf of type T has even degree,

deg(F ∗ ⊗ L)− deg(E) = −e− f + n` ≡ 0 mod 2.
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(b) The set {[E → V ] ∈ X : rk (F ∩E) = 0} is open in X, being precisely the domain of

definition of π∗|X . As a general point of X is saturated, by Proposition 5.6 the condition

that E/E be of type T is satisfied at all points of X, so QeF is open in X. �

Note that E/E being of type T is only a necessary condition for E to belong to IQ◦e(V )

(cf. Remark 5.7). Thus, a priori QeF may not be contained in IQ◦e(V ). However, we shall

see below in Proposition 7.11 that for e � 0, the type T condition is also sufficient. We

will use this fact in the proof of Theorem 1.4, and also in Corollary 7.15 to characterize the

points in IQ◦e(V )\IQ◦e(V ).

In view of Lemma 7.5 (a), we shall henceforth assume that −e−f +n` ≡ 0 mod 2,

and write −e− f + n` = 2t.

Next, we define a subset of QeF ⊂ IQe(V ) with even more desirable properties.

Definition 7.6. Let (QeF )◦ be the subset of QeF of those [j : E → V ] satisfying the following:

(i) E is saturated; that is, j is a vector bundle injection.

(ii) (F ∗ ⊗ L)/
(
j̃(E)

)
∼= OD ⊗ C2 for a reduced divisor D of degree t.

(iii) h1(C,Aj̃) = 0, where Aj̃ is as in Definition 6.2.

Remark 7.7.

(a) Note that conditions (ii) and (iii) depend only on the map j̃ : E → F ∗⊗L, and not

on V .

(b) Condition (i) is clearly open on QeF . By Lemma 6.3 (c), the family of sheaves over

T 2t(F ∗ ⊗ L) with fiber Aj̃ at j̃ is flat over the open subset of T 2t(F ∗ ⊗ L) defined

by condition (ii) (although, by Remark 6.4, not over all of T 2t(F ∗ ⊗ L)). Thus

conditions (ii) and (iii) together define an open subset of QeF . Hence (QeF )◦ is open

in QeF .

(c) If h1(C,L−1 ⊗ ∧2F ) = 0 then condition (iii) follows automatically by (6.3). Oth-

erwise, note that by (ii), the elementary transformation E ⊂ F ∗ ⊗ L is determined

by a choice of σ1, . . . , σt ∈ Gr(2, F ), and by Lemma 6.6, property (iii) is equivalent

to the images of these points spanning PH1(C,L−1 ⊗ ∧2F ).

Proposition 7.8. Suppose [j : E → V ] is a point of (QeF )◦.

(a) We have h1(C,L⊗ ∧2E∗) = 0.

(b) Both (QeF )◦ and IQ◦e(V ) are smooth of dimension I(n, `, e) at [j : E → V ].

Proof. Part (a) follows from condition (iii) and the sequence (6.3). Part (b) follows from

part (a) by Proposition 3.3 (c), and noting that (QeF )◦ is open in IQ◦e(V ) by Lemma 7.5

(b) and Remark 7.7 (b). �

Proposition 7.9. Suppose that (QeF )◦ is nonempty. For any component X of (QeF )◦, the

map π∗ : X → T 2t(F ∗ ⊗ L) is dominant and has irreducible fibers.
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Proof. Let [j : E → V ] be a point of X, so
[
j̃ : E → F ∗ ⊗ L

]
∈ Im (π∗). By Proposition

6.1 and Definition 6.2, the fiber π−1
∗

(
j̃
)

is an open subset of a torsor over H0(C,Aj̃). In

particular, it is irreducible.

Let us compute dimπ−1
∗

(
j̃
)

= h0(C,Aj̃). By definition of (QeF )◦, we have h1(C,Aγ) = 0,

so dimπ−1
∗

(
j̃
)

= χ(C,Aj̃). Thus, using Proposition 7.8 (b), we have

(7.1) dimπ∗(X) ≥ dim (QeF )◦ − dimπ−1
∗

(
j̃
)

= χ(C,L⊗ ∧2E∗)− χ(C,Aj̃)

= deg(L⊗ ∧2E∗)− deg(Aj̃),

the last equality because the bundles have the same rank. By condition (iii) and Proposition

6.3 (c) we have

deg(Aj̃) = deg(L−1 ⊗ ∧2F ) + t = (n− 1)f − n(n− 1)

2
· `+ t,

so the number (7.1) is(
n(n− 1)

2
· `− (n− 1)e

)
−
(
n(n− 1)

2
(−`) + (n− 1)f + t

)
= (n− 1)(−e− f + n`)− t = t(2n− 3)

since −e− f + n` = 2t. But T 2t(F ∗ ⊗ L) is irreducible of dimension t(2n− 3) by Lemma

5.3. Therefore, π∗|X is dominant. �

In view of conditions (ii) and (iii), by (6.3) the locus (QeF )◦ is nonempty only if t ≥
h1(C,L−1 ⊗ ∧2F ). In fact we shall later require the strict inequality

(7.2) t =
1

2
(−e− f + n`) > h1(C,L−1 ⊗ ∧2F ).

A computation using Riemann–Roch shows that this is equivalent to

e ≤ (2n− 3)f − 2 · h0(C,L−1 ⊗ F )− n(n− 2)`− n(n− 1)(g − 1)− 1.

Definition 7.10. We set

e(V, f, δ) := (2n− 3)f − n(n− 2)`− n(n− 1)(g − 1)− 2 · h0(C,L−1 ⊗ ∧2V )− 1.

As h0(C,L−1 ⊗ ∧2F ) ≤ h0(C,L−1 ⊗ ∧2V ) for any subbundle F ⊂ V , if e ≤ e(V, f, δ) then

the condition (7.2) is satisfied for any F ∈ IQ◦f (V )δ′ .

As the proof of the next proposition is rather involved, we postpone it to § 7.4.

Proposition 7.11. Suppose e ≤ min{e(V, f, δ), fδ} and −e − f + n` ≡ 0 mod 2. Then

(QeF )◦ is nonempty and dense in QeF . In particular, QeF is contained in IQ◦e(V ).

Proposition 7.12. If e ≤ e(V, f, δ), then QeF is nonempty and irreducible.
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Proof. By Proposition 7.11, it suffices to show that (QeF )◦ is irreducible. If X1 and X2 were

distinct irreducible components of Q◦F , then by Proposition 7.9, the restriction of π∗ to

either component would be dominant with irreducible fibers. But then X1 and X2 would

have to intersect along a dense subset of a generic fiber, contradicting the smoothness of

(QeF )◦ proven in Proposition 7.8. Thus Q◦F is irreducible. �

7.3. Proof of Theorem 1.4. Let e be an integer satisfying −e− fδ′ + n` ≡ 0 mod 2.

Lemma 7.13. The condition −e− fδ′ + n` ≡ 0 mod 2 implies that e ≡ fδ mod 2.

Proof. We distinguish three cases. If both n and ` are odd, then δ′ 6= δ by Definition 7.2.

Thus fδ′ ≡ fδ + 1 mod 2 by Theorem 2.13 (b). Then

e− fδ ≡ −e− fδ′ − 1 ≡ −e− fδ′ + n` mod 2.

But −e− fδ′ + n` is even, so e ≡ fδ mod 2.

If ` is even, then fδ′ ≡ fδ mod 2 by Theorem 2.13 (a), and the statement follows.

Lastly, if n is even, then δ′ = δ, so fδ = fδ′ , and the statement follows. �

Proposition 7.14. Suppose e ≤ e(V, fδ′ , δ) (cf. (7.10)) and −e− fδ′ + n` ≡ 0 mod 2.

(a) The collection QeF : F ∈ IQ◦fδ′ (V )δ′ is an open covering of IQ◦e(V )δ.

(b) If furthermore e ≤ fδ, then any two members of the covering have nonempty inter-

section.

Proof. Since e ≤ e(V, fδ′ , δ), by Proposition 7.11 all the loci QeF are contained in IQ◦e(V )δ.

By Lemma 7.5 (b), each QeF is open in IQ◦e(V )δ. Suppose E ∈ IQ◦e(V )δ. Then E/E is of

type T by Proposition 5.6; and by Lemma 7.1, we can find F ∈ IQ◦fδ′ (V )δ′ intersecting E

in zero at some point, and hence at the generic point. Thus E ∈ QeF . This proves part (a).

As for (b): Suppose F and F ′ are elements of IQ◦fδ′ (V )δ′ . Then a generic Λ ∈ OG(V )δ

intersects the fibers of both F and F ′ in zero. By Lemma 7.1, we can find a subbundle

E1 ∈ IQ◦fδ(V )δ intersecting F and F ′ in rank zero. As by hypothesis e ≤ fδ, in view of

Lemma 7.13 we may choose a type T elementary transformation E ⊂ E1 with deg(E) = e.

Then [E → V ] belongs to QeF ∩QeF ′ . �

Set e(V ) := min{fδ, e(V, fδ′ , δ) : δ = 1, 2}. Now we can prove the main theorem.

Proof of Theorem 1.4. Suppose e ≤ e(V ). We shall show that any IQ◦e(V )δ which is

nonempty is irreducible. Suppose X1 and X2 are nonempty irreducible components of

IQ◦e(V )δ. By Proposition 7.14 (b), there exist F1, F2 ∈ IQ◦fδ′ (V )δ′ such that for 1 ≤ i ≤ 2,

the locus QeFi intersects Xi in an open, therefore dense subset of Xi. Since QeFi is irreducible

by Proposition 7.12, it is dense in each Xi containing it. Moreover, by Proposition 7.14

(b), the open set QeF1
∩ QeF2

is nonempty. Therefore it is dense in each QeFi , thus also in

each Xi. Hence

X1 = X1 = QeF1
= QeF1

∩QeF2
= QeF2

= X2 = X2.

Therefore, IQ◦e(V )δ is irreducible.
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If ` is odd, then by Theorem 2.13 (b) and Definition 2.14, the locus IQ◦e(V )δ is nonempty

only if e ≡ δ mod 2. Therefore, IQ◦e(V ) = IQ◦e(V )δ is irreducible.

If on the other hand ` is even, then for all x ∈ C, the respective images of IQ◦e(V )1 and

IQ◦e(V )2 via any evaluation map evx : IQe(V ) 99K OG(V |x) are disjoint. Hence IQ◦e(V )1

and IQ◦e(V )2 are disjoint and irreducible. �

This proves Theorem 1.7 (b) in the even rank case, and we obtain the following character-

ization of the natural compactification IQ◦e(V ) of IQ◦e(V ).

Corollary 7.15. Suppose e ≤ e(V ). Then E ∈ IQe(V ) belongs to IQ◦e(V ) if and only if

E/E is of type T .

7.4. Proof of Proposition 7.11. To ease notation, we write Y := Gr(2, F ) and Ŷ for the

cone over Gr(2, F ) in the vector bundle L−1⊗∧2F . Recall that a finite set y1, . . . , yt ∈ CN+1

(resp., PN ) is said to be in general position if for 1 ≤ t′ ≤ t, the span of any t′ of the yi

has dimension min{t′, N + 1} (resp., min{t′ − 1, N}). We recall now a special case of [6,

Definition 4.20].

Definition 7.16. A principal part p ∈ Prin (L−1⊗∧2F ) will be called general Ŷ -valued if

the following conditions are satisfied.

• p can be represented by
∑t

i=1
σi
zi

where z1, . . . , zt are local parameters at distinct

points x1, . . . , xt of C respectively, and σi is a section of Ŷ ⊂ L−1 ⊗ ∧2F near xi.

• The cohomology classes
[
σi
zi

]
are in general position in H1(C,L−1 ⊗ ∧2F ), when

this space is nonzero.

(Recall that by Lemma 6.5, the class
[
σi
zi

]
defines the image of the point σi(xi) by the map

ψ : Gr(2, F ) 99K PH1(C,L−1 ⊗ ∧2F ).)

Proof of Proposition 7.11. By Lemma 7.4 and Lemma 7.13, the locus QeF is nonempty.

Suppose that E is a point of QeF \ (QeF )◦. We shall prove the proposition by showing that

there exists an analytic deformation {Es : s ∈ ∆} of E in QeF parameterized by a disk

∆ ⊂ C such that E0 = E while Es ∈ (QeF )◦ for s 6= 0.

The saturation E of E is an isotropic subbundle of V , of degree ē ≥ e. By Lemma 4.4,

we may assume that V is an extension of the form V p for an antisymmetric principal part

p satisfying E = Γ0 ∩ V p ∼= Ker(p). Note that deg(p) = −ē− f + n`, which by Lemma 5.4

is an even integer 2t̄.

By the proof of [9, Lemma 2.4] (essentially a diagonalization procedure; see also [8,

Lemma 2.7]), the principal part p can be represented by a sum

m∑
i=1

σi

zdii
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where zi is a local coordinate on a disk Ui ⊂ C centered at a point xi, and σi is a section

of L−1 ⊗ ∧2F on Ui which is decomposable at every point of Ui. We have

m∑
i=1

di =
1

2

(
deg(F ∗ ⊗ L)− deg(E)

)
= t̄,

where t̄ is as defined above. (Note that the xi need not be distinct, but if xi1 = · · · = xih
then the sections σi1 , . . . , σih are independent at xi1 .) Then by [6, Lemma 4.21] and its

proof, there exists an analytic family of principal parts {ps : s ∈ ∆} parameterized by a

disk ∆ around 0 ∈ C, such that p0 = p, while for s 6= 0 we have

ps =

m∑
i=1

di∑
j=1

ρi,j
s

σi
(zi − sτi,j)

for suitable nonzero scalars ρi,j and τi,j ; and moreover ps is general Ŷ -valued in the sense

of Definition 7.16 for s 6= 0. (In particular, τi,j′ 6= τi,j for j′ 6= j.)

We claim that if ē 6= e, then we may assume that E is a general type T elementary

transformation of E. For: T ē−e(E) is completely contained in QeF , since rk (E ∩ F ) = 0.

As T ē−e(E) is irreducible by Lemma 5.3 (a), if a general point belongs to the closure of

(QeF )◦ in QeF , then in fact every point does.

Therefore, by Lemma 5.3 (b) we may assume that

E/E ∼=

1
2

(ē−e)⊕
k=1

Ouk ⊗ C2,

for distinct and general points uk ∈ C lying outside Supp(p). Notice that 1
2(ē− e) = t− t̄.

Thus for each k there exists a local coordinate wk on a disk U ′k ⊂ C centered at a point uk

and a decomposable section νk of L−1 ⊗ ∧2F on U ′k, such that

E = E ∩Ker

(
t−t̄∑
k=1

νk
wk

)
= Ker

(
p0 +

t−t̄∑
k=1

νk
wk

)
,

where as usual we view the principal parts as maps F ∗ ⊗ L→ Prin (F ).

Now by Definition 7.10 of e(V, fδ′ , δ), we have the inequality

1

2
(−e− fδ′ + n`) = t ≥ h1(C,L−1 ⊗ ∧2F ) + 1.

Thus by [6, Lemma 4.23], there exist nowhere zero analytic functions ai,j(s) and bk(s) on

∆ such that the family of principal parts

(7.3) p′s := ps +
m∑
i=1

di∑
j=1

s · ai,j(s) ·
σi

zi − sτi,j
+

r∑
k=1

s · bk(s) ·
νk
wk

satisfies

(7.4) [p′s] ≡ [p] = δ(V ) for all s ∈ ∆,

and for s 6= 0, the principal part p′s is general Ŷ -valued in the sense of Definition 7.16.
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Next, for 1 ≤ i ≤ m and for 1 ≤ j ≤ di, let Di,j ⊂ ∆× U i be the analytic hypersurface

defined by zi − sτi,j = 0. Similarly, for 1 ≤ k ≤ t − t̄, let D′k ⊂ ∆× U ′k be the analytic

hypersurface {uk} × U ′k, defined by wk = 0. Let D be the analytic divisor

m∑
i=1

di∑
j=1

Di,j +

t−t̄∑
k=1

Dk,

a union of t copies of ∆. Let ρ : ∆ × C → C be the projection. Then p′s defines a section

of ρ∗(L−1 ⊗ ∧2F )(D)|D, and also a map of sheaves

P : ρ∗(F ∗ ⊗ L) → ρ∗F (D)|D.

We shall use P to construct a family of extensions and a family of elementary transforma-

tions. Let

ξ : ρ∗F (D) → ρ∗F (D)|D
be the restriction, a generalized principal part map. Globalizing (4.2), we define a sheaf V
over ∆× C as follows. For each open U ⊆ S × C, set

(7.5) V(U) = {(f, φ) ∈ (ρ∗F (D)⊕ ρ∗(F ∗ ⊗ L)) (U) : P (φ) = ξ(f)}.

It is not hard to see that V is an extension of ρ∗(F ∗ ⊗L) by ρ∗F , and in particular locally

free.

Now by the construction (7.5), if P (φ) = 0 then (0, φ) belongs to V. Thus

E := 0⊕Ker(P ) ⊆ 0⊕ ρ∗(F ∗ ⊗ L)

is a subsheaf of V. Note that Ker(P ) is a family of elementary transformations of F ∗ ⊗ L.

Claim: Let P , V and E be as above.

(I) For all s ∈ ∆, we have Vs ∼= V p′s .

(II) If s 6= 0, then Ker(P )s = Ker(p′s).

(III) Ker(P )0
∼= E.

By (I), since each p′s is antisymmetric, as before (4.3) restricts to an orthogonal structure

on each Vs. As Es is contained in 0 ⊕ (F ∗ ⊗ L) and the latter is isotropic with respect to

(4.3), in particular Es is isotropic in Vs for all s ∈ ∆.

By (I) and (7.4), in fact Vs ∼= V for all s ∈ ∆. Shrinking ∆ if necessary, we can assume

that V ∼= ρ∗V . By (II), the sheaf Es has degree −e for all s 6= 0. Clearly rk (Es ∩F ) = 0 for

all s ∈ ∆. Hence, by (III) we see that E ⊂ ρ∗V defines a deformation of [E → V ] in QeF .

By (II) and Proposition 4.3 (c), for s 6= 0 the subsheaf Es ∼= Ker(p′s) is saturated in

Vs ∼= V , so has property (i) of Definition 7.6. Moreover, for s 6= 0 the principal part p′s is

general Ŷ -valued, implying that Es satisfies property (ii). Furthermore, by the statement

of general position and since −e− fδ′ + n` > h1(C,L−1 ⊗ ∧2F ), the cohomology classes[
σi

zi − sτi,j

]
: 1 ≤ i ≤ m; 1 ≤ j ≤ di and

[
νk
wk

]
: 1 ≤ k ≤ t− t̄

span H1(C,L−1 ⊗ ∧2F ) for s 6= 0. Thus Es also has property (iii) for s 6= 0.
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In summary, E defines a deformation of [E → V ] with Es ∈ (QeF )◦ for s 6= 0. We conclude

that E lies in the closure of (QeF )◦, as desired.

It remains to prove the Claim. The principle for (II) and (III) is essentially identical to

that of the Claim in the proof of [6, Proposition 4.14]. We shall assume that L = OC and

all of the xi are distinct, as the most general case is notationally more cumbersome but

identical in substance.

Regarding (I): Comparing (4.2) and (7.5), we see that there is a natural map ιs : Vs → V p′s

for each s ∈ ∆. We shall use a local computation to show that ιs defines an isomorphism

of vector bundles.

Firstly, let U0 be an analytic open subset of C not containing any of the xi or the uk,

and intersecting each Ui and each U ′k in an annulus. Then, shrinking ∆ if necessary, we

can assume that ∆×U0 is disjoint from D. Thus V(∆×U0) = ρ∗(F ⊕F ∗)(∆×U0). As U0

contains no points of Supp(p′s) for any s, by (4.2) the map ιs is an isomorphism on {s}×U0.

Next, for a fixed k, let {ζ` : 1 ≤ ` ≤ n} be a frame for F |U ′k such that νk = ζ1 ∧ ζ2, where

νk is as in (7.3). Then {ρ∗ζ`} is a frame for ρ∗F over ∆× U ′k. Let {ψ`} be the dual frame

of F ∗|U ′k and {ρ∗ψ`} the corresponding frame for ρ∗F ∗ over ∆× U ′k. Then the sections

(ρ∗ζ1, 0), . . . , (ρ∗ζn, 0),

(
−s · bk(s)

wk
· ρ∗ζ2, ρ

∗ψ1

)
,(

s · bk(s)
wk

· ρ∗ζ1, ρ
∗ψ2

)
, (0, ρ∗ψ3), . . . , (0, ρ∗ψn)

belong to V(∆× U ′k). As the ζ` and ψ` are independent at every (s, x) ∈ ∆× U ′k, this

is a frame for V over ∆× U ′k. Now in view of (4.2), for fixed s ∈ ∆, since D does not

contain any fiber {s} × C, these sections restrict to sections of V p′s(U ′k), which clearly

remain independent. It follows that for each k, the map ιs : Vs → V p′s defines a vector

bundle isomorphism on {s} × U ′k for all s ∈ ∆.

By a similar argument, ιs defines an isomorphism on {s}×Ui for each i, and so we obtain

(I).

We now turn our attention to the sheaf Ker(P ) ⊆ ρ∗F ∗. Clearly Ker(P ) and ρ∗F ∗

coincide over ∆× U0. For 1 ≤ i ≤ m, let Φ =
∑n

`=1 h` · ρ∗φ` be a section of ρ∗F ∗ over

∆× U i, where the h` are analytic functions on ∆× U i. Then using (7.3), one computes

that P (Φ) is represented by the meromorphic section1 + s ·
∑di

j=1

(
ai,j(s) ·

∏
j′ 6=j(zi − s · τi,j′)

)
∏di
j=1(zi − s · τi,j)

 · (h1 · ρ∗η2 − h2 · ρ∗η1).

We make the following observations:

• Since ∆× U i is a polycylinder, the ring Ai of functions analytic on some neighbor-

hood of (0, xi) is a UFD by [12, p. 10].

• Each (zi − s · τi,j) is irreducible in Ai.
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• The numerator of the coefficient in the large parenthesis above has constant coeffi-

cient 1, and is therefore invertible in Ai.
• The ρ∗η` are independent at all points of ∆× U i.

Putting these facts together, we conclude that the section Φ belongs to Ker(P ) if and only

if both h1 and h2 are divisible by
∏di
j=1(zi − s · τi,j). Therefore, a frame for Ker(P ) over

∆× U i is given by

(7.6)

 di∏
j=1

(zi − s · τi,j)

 · ρ∗η1,

 di∏
j=1

(zi − s · τi,j)

 · ρ∗η2, ρ
∗η3, . . . , ρ

∗ηn.

Next, for any U ′k, let {ζ` : 1 ≤ ` ≤ n} be a frame for F over U ′k such that νk = ζ1 ∧ ζ2,

where νk is as in (7.3). Let {ψ`} be the dual frame for F ∗ over U ′k. By an argument similar

to the above (but simpler), we see that a frame for Ker(P ) over ∆× U ′k is given by

(7.7) wk · ρ∗ψ1, wk · ρ∗ψ2, ρ
∗ψ3, . . . , ρ

∗ψn.

A key point is that this is independent of s.

Let us now fix s ∈ ∆ and compare Ker(p′s) with Ker(P )s. Inspecting the expression

(7.3), we see that a frame for Ker(p′s) over Ui is given by

(7.8)

 di∏
j=1

(zi − s · τi,j)

 · η1,

 di∏
j=1

(zi − s · τi,j)

 · η2, η3, . . . , ηn.

Over U ′k, if s 6= 0 then a frame for Ker(p′s) is given by

(7.9) wk · ψ1, wk · ψ2, ψ3, . . . , ψn.

As for s = 0; clearly Ker(p′0) = F ∗ over U ′k.

For a fixed s 6= 0, comparing (7.6) with (7.8) and (7.7) with (7.9), we see that Ker(P )s =

Ker(p′s), proving (II). If s = 0, then by (7.6) and (7.7) and since the sets {x1, . . . , xm} and

{u1, . . . , ut−t̄} are disjoint, we have

Ker(P )0 = Ker(p0) ∩Ker

(
t−t̄∑
k=1

νk
wk

)
= E

(cf. (7.3)), so we obtain statement (III). This completes the proof of the Claim. �

8. Isotropic Quot schemes of odd rank orthogonal bundles

Let V ∼= V ∗ ⊗ L be an orthogonal bundle of rank 2n + 1 ≥ 3. As noted in § 2.1, the

degree deg(L) is even, say 2m. Therefore, det(V ) = Ln ⊗M for some square root M of

L, where deg(M) = m. Now M ∼= Hom(M,L) is an L-valued orthogonal line bundle, and

the orthogonal direct sum V ⊥ M is an L-valued orthogonal bundle of rank 2n + 2 and

determinant Ln⊗M ⊗M = Ln+1. Thus V ⊥M has isotropic subbundles of rank n+ 1 by

Theorem 2.5.
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8.1. Saturated loci in odd rank. We give now a generalization of [10, Proposition 3.11

(3)]. Note that IQe+m(V ) and IQe(V ⊥M) are subloci of, respectively, Quotn,e+m(V ) and

Quotn+1,e(V ⊕M).

Lemma 8.1. Each component of IQ◦e+m(V ⊥M) is canonically isomorphic to IQ◦e(V ).

Proof. For any rank n + 1 isotropic subbundle Ẽ ⊂ V ⊥ M , the intersection Ẽ ∩ V is

isotropic in V . As an isotropic subspace of a fiber V |x has dimension at most n, in fact

dim(E ∩ V |x) = n for all x ∈ C. Therefore, we have a diagram of maps of vector bundles

0 // V // V ⊥M // M // 0

0 // Ẽ ∩ V //

OO

Ẽ //

OO

M //

=

OO

0,

Thus the association Ẽ 7→ Ẽ ∩ V defines a morphism IQ◦e+m(V ⊥M)→ IQ◦e(V ).

Now suppose E ∈ IQ◦e(V ). By Lemma 2.5, we can find an orthonormal frame for V ⊥M
over some Zariski open subset U ⊆ C. By [10, Lemma 3.10 (3)], the bundle E|U can be

completed to an isotropic subbundle of (V ⊥ M)|U in exactly two ways. As C is a curve,

each such completion admits a unique extension to a rank n+ 1 isotropic subbundle Ẽ of

V ⊥M , clearly satisfying Ẽ ∩ V = E. We denote these completions by Ẽ1 and Ẽ2. By the

argument in the preceding paragraph, each Ẽj is an extension 0→ E → Ẽj →M → 0, so

defines a point of IQ◦e+m(V ⊥M). Moreover, as

rk (Ẽ1 ∩ Ẽ2) = rk (E) = n 6≡ (n+ 1) mod 2,

by Lemma 2.11 and Theorem 1.4 (a) the points [Ẽ1 → V ⊥M ] and [Ẽ2 → V ⊥M ] belong

to opposite components of IQ◦e(V ⊥ M). We conclude that the map IQ◦e+m(V ⊥ M)δ →
IQ◦e(V ) is bijective for each δ ∈ {1, 2}. �

Before proving Theorem 1.5, we recall for convenience the definition of the Stiefel–

Whitney class w(V ) for orthogonal bundles V of rank 2n + 1. In this case, ` = 2m is

even, and by Lemma 2.4 there exists M such that V ⊗M−1 is OC-valued orthogonal of

trivial determinant. Then

w(V ) := w2(V ⊗M−1) + nm in H2(C,Z2) ∼= Z2.

Proof of Theorem 1.5. Suppose V ∼= V ∗⊗L is orthogonal of rank 2n+1 and of determinant

Ln⊗M . As above, V ⊥M is L-valued orthogonal of rank 2(n+ 1) and determinant Ln+1.

By Theorem 1.4 (a) and Lemma 8.1, for e ≤ e(V ⊥ M) − m and e ≡ w(V ⊥ M) − m
mod 2, the locus IQ◦e(V ) and hence also IQ◦e(V ) is nonempty, irreducible and generically

smooth of the expected dimension. But we have

w(V ⊥M)−m = w2((V ⊥M)⊗M−1) + (n+ 1)m−m = w2(V ⊗M−1) +nm = w(V ).

Setting e(V ) = e(V ⊥M)−m, we are done. �
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8.2. Nonsaturated loci in odd rank. Although we will not give the same level of detail

as in the even rank case, we make one observation for a general orthogonal V of odd rank.

We continue to assume L is a line bundle of even degree 2m.

Lemma 8.2. Let V be an L-valued orthogonal bundle of rank 2n+1 which is general in its

component of moduli. Then for all e, the saturated locus IQ◦e(V ) has the expected dimension

I(n+ 1, 2m, e−m).

Proof. By Lemma 8.1, it suffices to show that h0(C,KCL
−1⊗∧2E⊥) = 0 for all E ∈ IQ◦e(V ).

One shows that this is satisfied by all very stable V , by an argument similar to that in the

proof of Lemma 3.4. We omit the details. �

Proposition 8.3. Let V be a general L-valued orthogonal bundle of rank 2n + 1. Then

IQe(V ) is equidimensional of dimension I (n+ 1, 2m, e−m).

Proof. Let Y be any nonempty irreducible component of IQe(V ). By generality and by

Lemma 8.2, we may assume that for all e, the saturated locus IQ◦e(V ) has the expected

dimension I (n+ 1, 2m, e−m). Let ē be the degree of the saturation of a general element

of Y . More precisely, let ē be the unique integer such that the locally closed subset

Y ◦ := {[E → V ] ∈ Y : deg(E) = ē}

is open and dense in Y . Now Y ◦ is a fiber bundle over a component of IQ◦ē(V ), with

fiber Elmē−e(E) over E. Thus dimY = dimY ◦ = dim IQ◦ē(V ) + dim Elmē−e(E). By the

hypothesis of expected dimension, we obtain

dimY = I (n+ 1, 2m, ē−m) + n(ē− e) = I (n+ 1, 2m, e−m) . �
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