Show simple item record

dc.contributor.authorDjenouri, Youcef
dc.contributor.authorBelbachir, Nabil
dc.contributor.authorCano, Alberto
dc.contributor.authorBelhadi, Asma
dc.date.accessioned2024-07-01T09:47:27Z
dc.date.available2024-07-01T09:47:27Z
dc.date.created2024-01-23T12:59:57Z
dc.date.issued2024
dc.identifier.citationInformation Fusion. 2024, 101 .en_US
dc.identifier.issn1566-2535
dc.identifier.urihttps://hdl.handle.net/11250/3137137
dc.description.abstractThis paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM (STVL-HM) is a novel method that learns from sensor data that is jointly represented in space and time in order to robustify the HM process. We propose a hybrid model based on a Convolution Neural Network (CNN) and Transformers. The CNN first learns the visual spatial features from various sensor data. The learned visual features are then fed into the transformer, which captures temporal information by observing the sensor status at various timestamps. STVL-HM has been tested using Kinetics-400, the real use case of human activity recognition scenario for HM data. The results reveal the clear superiority of the STVL-HM compared to the recent baseline HM solutions.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSpatio-temporal visual learning for home-based monitoringen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1016/j.inffus.2023.101984
dc.identifier.cristin2232946
dc.source.journalInformation Fusionen_US
dc.source.volume101en_US
dc.source.pagenumber9en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal