Parametric analysis of masonry arches following a limit analysis approach: Influence of joint friction, pier texture, and arch shallowness
Peer reviewed, Journal article
Published version
Date
2023Metadata
Show full item recordCollections
Original version
10.1177/10812865231175385Abstract
Among the most characteristic structures in historical constructions for crossing large spans are the masonry vaulted structures by utilizing their geometric stability to safely transfer the loads to supports with regard to their negligible tensile strength. The ability of masonry piers to bear such transferred stresses and safely convey them to the support is directly related to their structural integrity, as well as to a number of other factors. Using an in-house limit analysis code, a study on the crucial parameters impacting the safety level of piers under the thrust of arches is performed. Parameters such as pier texture, joint friction angle, and arch shallowness, namely, shallow, semi-circular, and pointed arches, were investigated under three load scenarios: horizontal and concentrated vertical live load applied at mid-span and quarter-span. The main findings of this work show that all studied parameters have a significant influence on the structure response. Higher friction values, sharper arches, and piers that follow the rule of art result in higher collapse
multipliers. Furthermore, this work emphasizes the importance of accounting for the sliding mechanism and masonry texture, parameters that are often neglected.