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Abstract
Among the most characteristic structures in historical constructions for crossing large spans are the masonry vaulted
structures by utilizing their geometric stability to safely transfer the loads to supports with regard to their negligible
tensile strength. The ability of masonry piers to bear such transferred stresses and safely convey them to the support
is directly related to their structural integrity, as well as to a number of other factors. Using an in-house limit analysis
code, a study on the crucial parameters impacting the safety level of piers under the thrust of arches is performed.
Parameters such as pier texture, joint friction angle, and arch shallowness, namely, shallow, semi-circular, and pointed
arches, were investigated under three load scenarios: horizontal and concentrated vertical live load applied at mid-span
and quarter-span. The main findings of this work show that all studied parameters have a significant influence on the
structure response. Higher friction values, sharper arches, and piers that follow the rule of art result in higher collapse
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multipliers. Furthermore, this work emphasizes the importance of accounting for the sliding mechanism and masonry
texture, parameters that are often neglected.
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1. Introduction
Arches over piers are typically encountered in various masonry architectural styles. Particularly, this combina-
tion of elements is quite common among Romanesque churches [1, 2]; Gothic cathedrals [3], churches [4], and
monasteries [5]; Byzantine architecture [6]; medieval castles [7]; colonial [8, 9] and baroque churches [10, 11];
and uncountable smaller structures built along human history [12].

An interesting study case of this masonry typology is the one corresponding to the UNESCO World Heritage
List of Matera in Italy [13] (see Figure 1(a)), a site where the seismic events had been previously underestimated
by the normative until more accurate soil exploration studies have been recently performed [14]. The particular
structural features of Matera buildings are the very thin vaults covering relatively large spaces supported by
multi-leaf masonry piers. Few “through stones” (in Italian “diatoni”) and several voids are commonly found
within the masonry piers internal structure of Matera constructions. Those piers usually sustain up to two levels
of 5- to 6-m span vaults with of approximately 25 cm, also built with similar poor masonry assemblages [15]
(see Figure 1(b)). In such cases, the piers are required to perform in a monolithic manner to sustain the thrust
and safely transmit it to the foundations.

Another outstanding example of such structures can be found among the settlements of Anavatos (ca. 11th
century) in the Greek island of Chios [16], which is a national listed monument. One- and two-story masonry
buildings in Anavatos were covered by single or successive masonry domes (see Figure 1(c)). These buildings
commonly had a rectangular layout of 4.5 by 7 m and were built next to each other with the aim of improving the
lateral resistance of individual units. Many of these structures have been devastated by rheological factors, lack
of maintenance, and natural disasters such as earthquakes and anthropological interventions (i.e. vandalism).
In Figure 1(d), the internal arrangement of a typical masonry wall unit with a lack of structural integrity is
shown. Moreover, Efesiou [16] provided insight of the original inclusion of perimetric and cross timber ties as
structural reinforcement. Unfortunately, most of those elements were removed and used as firewood by the last
inhabitants of the citadel, thus increasing the earthquake vulnerability of the remaining buildings.

Baggio and Trovalusci [15] highlighted the importance that the so-called “rule of art" had in the sound
structural behaviour of such structures. They clearly show the influence that the structural integrity of the pier
has on the global behavior of the structure when subjected to in-plane actions, vertical or horizontal. Giuffré
and Carocci [18] demonstrate that one of the major causes for the necessary interventions in the case of Mat-
era was the horizontal displacement of the walls due to the thrust. As well, Carocci [19] points out the crucial
importance of the internal arrangement of the masonry wall in its thickness when subjected to the horizon-
tal forces triggering the out-of-plane collapse. Additionally, three different approaches were suggested while
designing conservation interventions on the historical centers in order to recover the original “rule of art" state
of such constructions. According to Carocci, damaged masonry due to unduly interventions should be repaired
by removing the alterations of the original material and restoring their interlocking to adjacent walls, cracked
walls should be simply sealed by the means of compatible injections and plastering, and finally, heavily dam-
aged masonry walls should be rebuilt by adopting the “like for like" (from Italian “scuci-cuci") methodology
following original construction technique guidelines.

The collapse mechanisms that could appear in an arch over piers, also called a buttressed arch, could be
classified into three groups [20]:

• Local: where hinges appear only within the arch.
• Semi-global: where besides from the hinges at the arch, one hinge develops at the base of one of the piers.
• Global: where hinges appear within the arch and both piers.

Local mechanisms mainly appear in the presence of bulky piers (H/B < 1, where H represents pier height,
and B corresponds to pier base), global mechanisms are typical of slender buttresses, and semi-global mecha-
nisms commonly arise for intermediate piers geometries. Alexakis and Makris [12] discussed the possibility of
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Figure 1. (a) The Sassi and the Park of Rupestrian Churches of Matera (Italy), Author: Valerio Li Vigni, taken from the UNESCO
World Heritage Convention website [17]. (b) Example of a Matera masonry vault, representative of the arch over piers typology
(reproduced from the work by Giuff ‘e and Carocci [18]). (c) Successive domes in Anavatos (Chios island, Greece; ca. 11th century)
[16]. (d) Internal masonry structure of walls in Anavatos [16].

encountering five physically admissible hinging mechanisms (among which a mechanism involving two hinges
in a single pier was proposed), but this number could be even higher if sliding between masonry blocks is
accounted for as done on the analysis performed by Jiménez et al. [21].

Pulatsu et al. [22] assessed the seismic performance of monolithic and regularly coursed dry-joint masonry
piers supporting several arch forms under lateral loads proportional to the structures’ mass. Moreover, they
also examined the influence of steel tie-rod reinforcement on the studied masonry models. Those complex
arch systems were simulated through a discrete element modeling (DEM) approach using the commercial soft-
ware, 3DEC, in which masonry units were modeled as distinct blocks with zero tensile strength at their joints.
Results revealed that pointed arches provided better seismic resistance than the circular arch form. Moreover,
the implementation of steel tie-rods resulted on significant increase in stability for the arch-pier structures.

The curvature of an arch has a direct influence on the thrust that the element exerts at the arch-pier con-
nection. It is well known that the higher the curvature of the arch is, the less horizontal thrust it exerts on the
piers. This observation clearly affects the buttress design. Monolithic piers and pointed arches resulted in higher
collapse multipliers in comparison with discrete piers and circular arches. In terms of collapse mechanism, a
four-hinge failure mode developed. Three hinges were located along the arches, whereas the fourth one appeared
at the base of the pier (located on the side of the arch corresponding to the horizontal load direction).
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The application of the steel-tie reinforcement resulted in higher collapse multipliers for all the different arch
geometries and pier typologies. It is noted that this increment was higher for circular arches than for pointed
ones. Furthermore, in terms of collapse mechanism, the inclusion of the tie also affected the outcome. For the
case of reinforced arch-pier structures, again a four-hinge mechanism developed, this time involving both piers.

Dimitri et al. [23] carried out a systematic DEM parametric analysis to assess the dynamic response and
strength of multi-drum columns and arches on buttresses subjected to step and harmonic base impulses. For
the latter case, arches were circular and buttresses were either monolithic or discrete. Other studied parameters
were the inter-block friction value, the geometrical proportions, the impulse shape, and the inclusion of spandrel
infill.

Counter-intuitively, the models with discrete buttresses resulted in higher dynamic resistances in comparison
with the monolithic ones for short duration impulses (< 0.4 s). This phenomenon is explained based on the
collapse mechanism typologies observed. While the monolithic buttresses models yielded a rocking collapse
mechanism, the discrete buttresses presented a combined rocking–sliding mechanism, which allowed higher
levels of energy dissipation during the mentioned impulse range. For long duration impulses, the dynamic
resistance of both types of models was practically identical, and it tended to match the static solution of the
problem.

The friction value variation had no effect whatsoever for the monolithic buttresses models, whereas that a
slight resistance increment was detected for the higher friction values adopted on the discrete buttresses models
(although this resistance improvement was only noticed during the short impulse duration range, < 0.4 s). On
the other hand, the presence of spandrel infill caused a resistance decrease for all the models studied. This is
explained by the fact that the destabilizing horizontal loads are higher than the expected stabilizing vertical
weights. Furthermore, inter-block sliding of the spandrel units may result in higher thrust levels transferred at
the buttresses, thus leading to weaker structures under the dynamic loads studied.

Bagi [24] demonstrates that the Safe Theorem of Heyman may not always hold, and that even if sliding
is not considered, a system of rigid blocks may collapse although an equilibrated system of forces is found.
Providing some examples Bagi demonstrates cases when it fails and as such proposes the need for an improved
formulation of the theorem emphasizing the importance of the consideration of frictional forces in the system
as non-Heymanian approach.

Hua and Milani [25, 26] propose a limit analysis approach to enable a simple modeling of masonry rein-
forced arches. They present the differences and drawbacks in considering the associated flow rule. Formulating
both the associated and non-associated problem, where the former is implemented through linear programming
(LP) and the latter through the sequential linear programming (SLP) scheme proposed by Gilbert et al. [27],
they study the behavior of a segmental masonry arch within the lower bound and upper bound theorems. Con-
sidering the SLP scheme in each iteration, Gilbert et al. adjust the limit surface and thus gradually removing
the dilatancy angle. Additionally, they emphasize the overestimation achieved when considering the associated
flow rules that have an impact when assessing large-size problems. Hua and Milani perform further studies for
the cases of reinforced masonry arches by simplifying it with no sliding restriction [25] and considering it [26].
Full and local reinforcements were analyzed where the importance of non-associated sliding was stressed out.

Zampieri et al. [28] implemented a thrust line analysis using the virtual work principle in order to study the
structural response masonry piers supporting circular arches subjected to support settlements. Their approach
followed the well-known Heyman assumption of no sliding between elements (infinite contact shear strength).
For the case of masonry arches supported by buttresses subjected to a support settlement, only three hinges are
required to form a collapse mechanism.

They found that the principal parameters affecting the stability of those kinds of structures were the set-
tlement angle and arch slenderness. Furthermore, they highlighted the higher susceptibility of the pier-arch
assemblies to horizontal displacements in comparison with vertical or inclined support movements.

Nela et al. [29, 30] implemented an upper-bound limit analysis numerical approach to study the structural
response of partially reinforced masonry arches over masonry piers. They achieve to model the influence of the
reinforcement by means of increased inter-block interfaces’ cohesion values. Furthermore, they also studied the
effect that arch sharpness had on the collapse multipliers and mechanisms of the structures while not considering
geometrical or mechanical properties for the piers (a gap that is intended to be covered by this paper.)

In terms of both collapse mechanisms and multipliers, Nela et al. found a perfect agreement for the unre-
inforced scenarios in comparison with the DEM results reported by Pulatsu et al. [22]. Moreover, they stated
that the tie-bar reinforcement proposed by Pulatsu et al. was more effective for semi-circular arches and slightly
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pointed arches. On the other hand, the partial reinforcement strategy with composites resulted in higher collapse
multiplier values than the one with a tie-bar for sharper pointed arches.

Dimitri and Tornabene [31] investigated the structural behaviour of circular, pointed, and basket-handle
(three-centered) buttressed arches by the means of limit analysis analytical and DEM approaches. They found a
good correlation with both analyses, thus validating the use of DEM to assess the condition of masonry arches
over piers. Dimitri et al. concluded that buttressed pointed arches presented higher resistance than circular
ones in the case of either local or semi-global collapse mechanisms formation. On the other hand, basket-
handle buttressed arches with small embrace angles (120◦ and 150◦) exhibited a weaker behavior than circular
buttressed arches, whereas that for large embrace angles (180◦), three-centered buttressed arches were more
stable than their circular counterparts.

Alternative numerical approaches and methodologies have been developed by other authors. For example,
triumphal arches, a slight variation of buttressed arches or arches over piers, were studied by De Luca et al. [20]
with a simplified FEM-LA combined approach and their results were validated against non-linear detailed FEM
models. Milani [32] formulated a new lower-bound finite element limit analysis for double-curved masonry and
validated it with some examples. It proved to be very practical for the materials with almost null tensile strength
and the outcomes provide efficiency and robustness of this approach when applied to masonry structures with
double curvature but not limited. Building upon the well-established Heyman’s [33–35] assumptions regarding
unreinforced masonry behavior, DeJong and Ochsendorf [36] studied the structural response of masonry arches
on buttresses using two different approaches, namely, thrust-line analysis and DEM. Similarly, Brandonisio et
al. [37] and Brandonisio and De Luca [38] applied Heyman’s hypothesis to develop an analytical model and
study the behavior of buttressed arches, a model that was validated by comparing its results against values
obtained by the means of DEM. Another important issue when dealing with curved masonry supported on piers
is the settlements and Tiberti et al. [39] using a genetic algorithm–adaptive homogeneous approach represented
the crack patterns induced by ground settlements on masonry walls.

Other aspects regarding the structural response of buttressed arches have been deducted by other authors as
well. Just to name a few, Coccia et al. [40] studied the effect of support displacement through an analytical tool
capable of computing the support displacement magnitude that would lead to collapse and of assessing the arch
thrust value at that stage. They also considered the influence of pier height and concluded that accounting for
support displacement is of paramount importance, especially for slender piers, as it greatly affects the stability
of the structure.

Not many researchers deal with the texture of piers and among the few to do so were Alexakis and Makris
[12]. They studied piers with only horizontal joints (horizontal rupture) and discretized piers where a diago-
nal crack could develop (elongation failure). One of the limitations of this study though is the fact that they
implemented Heyman’s assumptions, thus only rotation hinges could develop within their analyzed models.
The numerical approach developed by Alexakis and Makris was based on the principle of stationary potential
energy and it was validated in comparison with the results obtained through a DEM approach.

The main contribution of this work intends to include the crucial aspect of the inter-block sliding in the
behavior of buttressed arches, in contrast to the many studies under Heyman assumptions that neglect this
effect. Utilizing the specialized upper-bound limit analysis approach through the in-house code entitled ALMA
2.1, a study of the pier texture effect in the global response of masonry arches with different rise considering
diverse level of friction at the joints is performed.

The rest of this paper is organized such as in section 2 the theoretical formulation behind the numerical
approach used to carry out the simulations presented in this paper is detailed, while in section 3, the parametric
analysis performed is presented where three main parameters were analyzed, namely, arch sharpness, inter-
block contact friction, and pier texture. In section 4, the results obtained from the parametric analysis in terms
of collapse multipliers and collapse mechanisms are presented followed by a corresponding discussion. Finally,
in section 5, the main conclusions drawn from this work are highlighted.

2. Methodology: the ALMA code
The upper-bound LA approach implemented in the ALMA 2.1 software and used in this work is based on
the notation and theoretical formulation originally proposed by Baggio and Trovalusci [41, 42]. Within this
framework, masonry arches (and other masonry structures) are described as a system of n blocks and m joints.
Masonry blocks are rigid with no-tension and frictional joints and the sliding resistance is described through the
coefficient of friction, tan(φ), where φ is the friction angle. In 2D simulations, the blocks can undergo two kinds
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(c)(a) (b)

Figure 2. Schematic representation of possible mechanisms for one-block structure: (a) rotation, (b) sliding, and (c) sliding (dilatant
behavior).

(a) (b)

Figure 3. Schematic representation of a two-block structure with one joint represented in the local reference system: (a) kinematic
variables and (b) geometric quantities.

of motion: translation (sliding) and rotation about their edges (hinging) as shown in Figure 2(a)–(c), respectively.
Moreover, in ALMA 2.1, sliding assumes a dilatant behavior (Figure 2(c)). Hereon vectors are denoted by bold
lowercase letters, matrices by bold uppercase letters, and scalar entities by non-bold letters.

2.1. Kinematic compatibility

Considering a 2D space with the orthonormal basis e = {e1, e2}T , generalized infinitesimal displacements at
block centroids are denoted by the vector ui = {ui

1, ui
2, θ i}T , which contains the displacement components u1,

u2, and the rotation θ (Figure 3(a)). The u (∈ R3n) vector collects all single vectors of individual blocks’
generalized displacements.

The kinematic variables such as the relative normal displacement (εk), relative tangential displacement (γ k),
and relative rotation (χ k) kinematic components of every kth joint are organized into a vector εk = {εk, γ k , χ k}T .
The vector ε (∈ R3m) collects all the single vectors into the global vector of generalized strains, as shown in
Figure 3(b).

Kinematic compatibility of the system is constructed by applying a rotational matrix that maps the local
joint coordinates of arbitrarily directed coordinates to the global system. In the reference configuration, middle
edge points of contact surfaces coincide. Therefore, for a kth joint between two blocks ith and jth, kinematic
inter-compatibility assumes the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εk = − sin(ϕk)ui
1 + cos(ϕk)ui

2 +
(

gi,k
1 cos(ϕk) + gi,k

2 sin(ϕk)
)

θ i+
+ sin(ϕk)uj

1 − cos(ϕk)uj
2 −

(
gj,k

1 cos(ϕk) + gj,k
2 sin(ϕk)

)
θ j ,

γ k = cos(ϕk)ui
1 + sin(ϕk)ui

2 +
(

gi,k
1 sin(ϕk) − gi,k

2 cos(ϕk)
)

θ i+
− cos(ϕk)uj

1 − sin(ϕk)uj
2 −

(
gj,k

1 sin(ϕk) − gj,k
2 cos(ϕk)

)
θ j ,

χ k = θ i − θ j ,

(1)
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(a) (b)

Figure 4. Schematic representation of a two-block structure with one joint represented in the local reference system: (a) dead and
live loads and (b) static variables.

where ϕk is the inclination angle of the joints as shown in Figure 3(b). Thus, equations (1) for the whole system
read as:

ε = B u . (2)

where B represents the compatibility matrix of the system. The B matrix for the 2D case is a linear transform
R3n −→ R3m. If the null space of the compatibility matrix for the homogeneous system has a zero dimension,
then equation (2) can be written in the following form:

ε1 = B1 u ,

ε2 = B2 u ,
(3)

where B1 is the kinematic submatrix with a maximum rank of (3n) as a linear transform R3n −→ R3n

and B2 is the rest of the kinematic matrix as a linear transform R3n −→ R3(m−n). Vectors ε1 (∈ R3n) and ε2
(∈ R3(m−n)) represent the vector of the free generalized strains and vector of the linearly dependent strains,
respectively. Utilizing the Gauss–Jordan transform and after some algebraic operations the solution takes the
form:

u = A0 ε1 ,
ε2 = A ε1 ,

(4)

where A and A0 substitute B2 B−1
1 and B−1

1 , respectively.

2.2. Equilibrium

In the considered 2D space, the system of n blocks is subjected to a couple of loads applied in their respective
centroid of mass, where for each ith rigid block:

f i = f i
0 + αf i

L , with i = 1, . . . , n , (5)

where f i
0 = {f i

01, f i
02, mi

0}T and f i
L = {f i

L1, f i
L2, mi

L}T represent the dead and live load vectors, respectively. Live
loads are proportional to the dead loads through a non-negative load multiplier, α (see Figure ??). Analogous
to the global generalized displacement vector, the global load vector f (∈ R3n) is obtained collecting the single
load vectors f i.

Moreover, at every kth joint, a triad of normal force (Nk), shear force (Tk), and moment (Mk) components is
present, thus forming the static variables of the joint (see Figure 4(b)). These forces are assembled into a global
vector of generalized stress σ (∈ R3m). Likewise, the generalized stresses are represented in a local system at
every kth joint σ k , as shown in Figure 4(b). The equation of equilibrium for the entire system now reads as
follows:

BTσ + f = 0 . (6)
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For the vector of generalized loads f from equation (6), using the principle of the virtual work and applying
equilibrium the following equation is obtained:

f u + σ ε = 0. (7)

After introducing the vectors of generalized contact actions, σ 1 that works on the free generalized strains ε1
and σ 2 that works on the linearly dependent generalized strains ε2, equation (7) takes the following form:

f u + σ 1 ε1 + σ 2 ε2 = 0. (8)

Substitution of the solution for generalized displacements from equation (4) and considering equation (5) of
the generalized load, further algebraic operations yield the following equation:

σ 1 + AT σ 2 + AT
0 (f 0 + α f L) = 0. (9)

2.3. Yield domain

The generalized yield domain of the system is formulated as

y = NTσ ≤ 0 , (10)

where N represents the gradient matrix of the adopted failure surface. The gradient matrix N for the 2D case is
a linear transform R3m −→ R4m. For every kth joint, equation (10) assumes the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yk
1 = lk/2Nk − Mk ;

yk
2 = lk/2Nk + Mk ,

yk
3 = tan(φ)Nk − Tk ;

yk
4 = tan(φ)Nk + Tk ,

(11)

where lk is the length of kth joint. In the same analogy for the free σ 1 (R3n −→ R4m) and linearly dependent
σ 2 (R3(m−n) −→ R4m) generalized contact actions, the following inequality is obtained for the yield domain:

y = NT
1 σ 1 + NT

2 σ 2 ≤ 0 . (12)

2.4. Flow rule

The flow rule expresses the generalized vector of strains, ε, as a linear combination of non-negative coefficients,
λ (also known as plastic multipliers) of four modes for the 2D case. This relationship can be written as

ε = M λ , (13)

where M is the matrix containing the modes of failure as a linear transform R4m −→ R3m. For every kth joint,
equation (13) assumes the following form:

⎧⎪⎨
⎪⎩

εk
1 = lk/2 λ1 + lk/2 λ2 ,

γ k
2 = −λ3 + λ4 ,

χ k
3 = −λ1 + λ2 .

(14)

In the same analogy for the free ε1 (R4m −→ R3n) and linearly dependent ε2 (R4m −→ R3(m−n)) generalized
strains, the following inequality is obtained for the yield domain:

ε1 = M1 λ ,

ε2 = M2 λ ,
(15)
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2.5. Complementarity and positive work of the live loads

Within the domain of holonomic perfect plasticity where there is neutral proportional loading with no unload-
ing, remaining on the yield surface is only permitted for positive values of the plastic multipliers. Therefore,
reaching an admissible collapse mechanism, this requirement is satisfied imposing Prager’s consistency (com-
plementarity) condition provided in equation (16). In this condition, it is ensured that positive plastic multipliers
λ �= 0 generate plastic collapse only for y = 0, whereas in the case of y �= 0, plastic collapse does not occur as
λ = 0.

λT · y = 0 . (16)

As a final condition, the collapse mechanism is characterized by the non-negative work of the live loads that
is normalized [43] and expressed in equation (17).

f T
L · u = 1 . (17)

2.6. The non-associative optimization problem formulation

In the presence of non-associative friction, the relations shown characterize the problem of non-standard rigid-
plastic materials. The main outcomes to be resolved from the above-formulated problem is the factor α which
as stated is the load multiplier as a proportional load coefficient. So far the equations that govern the problem
of the entire structure for the non-associative case can be summarized as follows:

Kinematic compatibility: ε = B u,

Equilibrium: BT σ = f 0 + αf L,

Yield domain: y = NT σ ≤ 0,

Flow rule: ε = M λ,

Positive live load: f T
L · u = 1,

Consistency condition: λT · y = 0.

(18)

In the case of non-standard materials, that is, materials with non-associated flow rule, the postulate of
Drucker [44] is not valid and normality rule does not hold, which yields a non-unique solution. Among the
first ones to notice the solution non-uniqueness was Coulomb [45]. Nevertheless, as per the “Friction Theo-
rems" of Drucker [46], the solution set of statically and kinematically admissible load multipliers is bounded.
In this case, the solution set of collapse load multipliers αc of a system containing non-associative frictional
joints is contained within a upper boundary of a collapse multipliers considering joints with dilatancy and a
lower boundary of collapse multipliers considering frictionless joints. After performing algebraic operations on
equations (4), (9), (12) and (15)–(17), the NLP problem can be expressed as follows:

αc = min.{α} subjected to:

(AM1 − M2) λ = 0,

−λT · (N1A0)T (f 0 + αf L) + λT · (N2 − N1A)Tσ 2 ≤ 0,

−(N1A0)T (f 0 + αf L) + (N2 − N1A)Tσ 2 ≤ 0,

λT (A0M1)T · f L − 1 = 0,
α ≥ 0, λ ≥ 0,

(19)

where consecutively equations (19) represent conditions of kinematic compatibility, static admissibility, non-
linear complementarity, and normalized positive live loads, with the bounds on the unknowns α and λ on the
last expression.

The programming problem obtained consists of an NLP-constrained minimization problem and the main
issues with the solution is that it is often trapped in a local minimum far from the global one leading to incorrect
collapse multiplier. To avoid this obstacle, Baggio and Trovalusci [41] suggested a two-step procedure where
the LP solution (described in the next section) from the first step is used as the initial estimate for the solution
of the NLP on the second step.



10 Mathematics and Mechanics of Solids 00(0)

2.7. The associative optimization problem formulation

Drucker [46] showed that for assemblages with non-associated flow rules, the bounds on the multiplier, namely
lower and upper, can be determined. Considering the Radenkovic [47] theorem, the lower bound for the multi-
plier as described by the equations in the previous sections is equivalent to the ultimate multiplier of the system
with actual flow rule provided in equation (15) that is associated with a yield surface ŷ = 0, but the surface in
this case is the plastic potential and it serves such as to define MT = ∂ ŷ/∂σ . Whereas the upper bound of the
multiplier is equivalent to the ultimate multiplier for the system with the actual flow rule and associated with the
yield surface of equation (12) and the associated flow rule that is defined from M = ∂y/∂σ = N . The latter cor-
responds to the collapse load of a system with frictional and dilatant interfaces. The problem can be linearized
when considering the actual yield surfaces, but by correcting the direction of vector λ to be associated with that
surface, and this was achieved by Baggio and Trovalusci [42] replacing the friction angle with dilatancy.

In this case, the problem is linearized and can be solved using a linear mathematical programming. From
the previous section this serves as the initial estimate for the two-step procedure; however, the effectiveness in
terms of accuracy of the solution with respect to the number of unknowns (as provided in the work by Baggio
and Trovalusci [41]), comparing NLP and LP results, is not so distinct, and in the case of parametric analysis,
only the relative influencing parameters are significant.

Therefore, considering a dilatant behaviour for the joints, yield surface remains the same as the non-
associative case but by modifying the modes of failure matrix M , after replacement of friction angle with
dilatancy, it is equalized with the gradient matrix N

M = N , (20)

signifying the plastic flow is associated with the yield surface and the normality rule holds. Now the relations
in equation (14) take the following form

⎧⎪⎨
⎪⎩

εk
1 = lk/2 λ1 + lk/2 λ2 + tan(φ)λ3 + tan(φ)λ4,

γ k
2 = −λ3 + λ4 ,

χ k
3 = −λ1 + λ2 ,

(21)

and consecutively equation (15) is expressed as follows:

ε1 = N1 λ ,
ε2 = N2 λ .

(22)

The adopted kinematic upper bound problem is defined (in terms of a LP) as

αc =min
{−λT (A0N1)T f 0

}
subjected to:

(AN1 − N2) λ = 0,

λT (A0N1)T f L − 1 = 0,

λ ≥ 0,

(23)

in which equation (23) is consecutively the condition of compatibility and normalized positive work of the live
loads with the last expression giving the bounds on the unknowns for λ.

Recently, ALMA 2.1 has been enriched with the possibility of assigning different values of cohesion to
every joint to account for particular tensile and shear strength values at every block interface. This feature, in
addition to the various already available software capabilities of ALMA 2.1, namely, foundation settlement [48]
and retrofitting tie modeling [49], has been validated with other literature examples in the work by Nela [29,
30]. Cohesion is accounted by modifying the yield domain as shown in Figure 5, where in blue are given the
yield domains including cohesion for both rotation (a) and sliding (b). Equation (24) describes this generalized
domain:

y = NTσ + c ≤ 0 , (24)

Thus, the objective function of the LP, equation (23), is transformed into
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(a) (b)

Figure 5. Implemented Mohr-Coulomb yield domain with and without cohesion for (a) bending and (b) shear.

Figure 6. General structure of the ALMA code modules.

αc =min
{
λT [c − (A0N1)T ]f 0

}
, (25)

where the different cohesion values assigned to every joint of the masonry assemblage are stored in the form of
a vector c. A Mohr–Coulomb classical yield domain is considered with the inclusion of cohesion, thus indirectly
involving tensile strength of the joints.

2.8. Code structure

A general structure of the code including the main modules is given in Figure 6. In this manner the code utilizes
as processor PythonTM programming language where for the LP optimization problem the MOSEK® [50] library
is used for the solution. The in-built optimization libraries in PythonTM such as SciPy can be used as well, but
MOSEK® provides a more stable and faster solution. Pre-processing is carried out in a CAD environment where
the blocks are created using closed polygons indicating the intersection joints and on this wise the joints of
contact. Finally, post-processing is executed inside PythonTM which outputs the collapse multiplier, whereas the
collapse mechanism is visualized with the help of the open source code Paraview [51].

3. Parametric analysis description
In this paper, the influence that three main factors have in the structural behavior of buttressed arches is studied.
A full composite design has been implemented; in other words, all levels of every factor have been combined
with each other, which has resulted in a relatively large pool of numerical simulations. Taking advantage of
the relatively fast computations by applying the limit analysis approach, the simulations are performed within a
reasonable amount of time (average time per analysis was 21 s with a maximum of 44 s).
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Figure 7. Different levels of the arch shallowness and pier texture parameters (dimensions in cm).

The first factor is purely geometry related and it has to do with the shape of the arch. A shallow arch, a
semi-circular arch, and two pointed arches have been taken into account. This factor is herein referred to as
the arch shallowness. The values assigned to arch shallowness correspond to the ratio between the arch rise (f )
and the arch span (s) (see Figure 7). As many authors have previously pointed out [52–55], pointed arches exert
lower values of horizontal thrust at their springs in comparison with semi-circular and shallow arches. When
they are supported by piers, this phenomenon plays a paramount role as to how that horizontal thrust is absorbed
by the buttresses and transferred to the foundations of the structure.

The second parameter, friction, is a mechanical one and has to do with the surface shape of the masonry
blocks. The surface contact between blocks of a dry masonry structure, or of one with highly decayed mortar
as typically found on historical buildings, highly influences the response of the assembly. Friction is described
by the so-called friction angle, φ, whose values in practice usually range between 15◦ and 63◦ [56] (although
theoretically, those values could be between 0◦ and 90◦). Therefore, common friction coefficient values, tan φ,
range between 0.27 and 1.96. Common friction angle values on historical masonry structures can be found
between 15◦ and 45◦; thus, for this study it has been decided to adopt 20, 30, and 40 as the levels for the friction
factor.

The pier texture factor could be seen as a combination between geometry and mechanical properties.
Throughout the history of masonry construction, it has been well known that the rule of art, which was devel-
oped after a long series of trial and errors and that traditionally passed from master to apprentice, played a
paramount role on the structural stability and soundness of masonry structures. Thus, the geometrical arrange-
ment of the masonry blocks influences the mechanical properties of the structural elements built with this
material and provides a better interlocking within them yielding various levels of tensile strength for the masonry
[57]. The ideal case in this paper is idealized as a monolithic pier where in theory the rule of art is followed
“verbatim" and the quality and strength of the mortar is such that crack opening among the blocks of the pier is
prevented. A second pier texture case is idealized as a regularly arrangement of the masonry blocks at the pier.
Then, two cases of idealized damaged or ill-built piers are considered, namely, one with irregular texture and
another one with internal voids (see Figure 7). On the other hand, pier dimensions are kept constant throughout
this study, as the focus is placed on pier texture only, and not on pier geometry itself.

Furthermore, three different load scenarios have been analyzed. In the first one, a proportional horizontal live
load is applied to the entire masonry assembly, whereas that for the other two cases, a concentrated proportional
vertical live load has been applied at mid and quarter span, respectively (relative to the weight of two arch blocks
for the mid span and three for the quarter span). All load scenarios also take into account the vertical self-weight
of the buttressed arches. ALMA code possesses the possibility to consider the vertical loading of the infill or
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other actions (infill considerations with ALMA have been previously studied [29]); in this study, they have been
neglected to observe the pure structural behavior of the arch.

Therefore, four different pier textures, four different arch geometries, three different levels of friction value,
and three different load scenarios have been combined in the study presented in this paper. This has given
rise to the creation and simulation of a total 144 models studied utilizing the limit analysis approach. Note
that for the sake of simplicity of the figure captions, an acronym system has been created for each type of
analysis. The acronym follows a sequence of “texture_shallowness_friction." Texture takes attributes such
as MON—monolithic, REG—regular, IRR—irregular, and VOD—with voids. Shallowness takes attributes as
375—shallow, 500—semi-circular, 707—pointed, and 866—very pointed arches. Friction takes attributes fol-
lowing the angle of friction such as 20—low level, 30—medium level, and 40— high level. For example, the
acronym “MON_707_30" refers to the pointed arch supported on monolithic piers considering a friction angle
of 30◦.

4. Results and discussion
As mentioned in the previous section, a total of 144 models were created and analyzed. In order to simplify
the analysis of the results, all the collapse multipliers and collapse mechanisms obtained have been grouped
by load scenario. Collapse multipliers are presented as box plots in combination with swarm plots. For every
load scenario, three box/swarm plots are included (one for each parameter analyzed, namely, pier texture, arch
shallowness, and friction value). In each one of these plots, “minimum" and “maximum", as well as first quar-
tile (Q1), median, and third quartile (Q3), are displayed along with all the individual values of the collapse
multipliers obtained. Outlier values are shown as black rhomboids in those figures as well.

Beside the use of IQR, a full factorial design of experiment has been performed to assess not only the
statistical significance of each of the parameters but also their internal interaction. The outcomes of this analysis
have been summarized in a Pareto chart of the standardized effects with a confidence level of 95%. From this
chart it is easy to evaluate which of the parameters have a significant effect on the response, in this case the
collapse multiplier, based on the threshold given marked with the red dashed line. Additional information about
the design of experiment can be found in the work by Rios et al. [55] where they perform this statistical study.
Whereas the available raw data of the numerical simulations performed for all the cases are available in [59–61].

4.1. Collapse multipliers for the horizontal live load case

From Figure 8(a) clear positive relationship can be observed between friction and arch shallowness with respect
to the collapse multiplier values obtained. In other words, the higher the value of friction angle and arch shallow-
ness, the higher would be the collapse multiplier. Moreover, we can see that the quality of the pier texture also
plays an important role on the strength of masonry buttressed arches. Higher collapse multiplier values were
found for the cases of monolithic and regular texture piers, both of which comply with the so-called “rule of
art." On the other hand, the idealized irregular and voids pier texture models, which are idealizations of ill-built
or damaged/decayed structures, provided lower collapse multiplier values. These observations are in agreement
with similar results reported in the literature and reinforce the concept of the importance that masonry texture
and the adequate implementation of the “rule of art" has on the stability of such structural typologies.

Other inferences could be made based on the information summarized in Figure 8. The spread of the data
obtained could be also analyzed to estimate the variability that could be expected if the methodology presented
in this paper would be used to analyze other masonry structures based on the parameters studied in this research.
Several data spread measurement tools are available, namely, range, standard deviation, and interquartile range
(IQR = Q3 − Q1). It has been decided to use the IQR for such purposes due to the fact that the presence of
outliers may affect the estimation of the other two quantities.

Thus, it could be noted that weaker pier textures (irregular and voids) present higher variability (data spread)
with respect to sound pier textures (monolithic and regular) as the box sizes (IQR) of the former are larger
than those of the latter. This collapse multiplier values variation is almost identical for the different levels of
the arch shallowness parameter (slightly higher for the shallow arches group in comparison with the pointed
arches one with a shallowness value of 0.866). On the other hand, the variability obtained for the different
friction levels is clearly observed. Higher variability was found for the low-friction value group in contrast to the
lower variability of the high-friction value group (intermediate variability for the medium-friction value group).
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(a) (b)

Figure 8. (a) Box plot and swarm plot of all collapse multipliers and (b) the Pareto chart of standardized effects for the horizontal
live load case.

Table 1. Interquartile ranges (IQRs) for all parameter levels for the horizontal live load case

.

Parameter Level IQR Mean Coef. var. Min. Max.

Piers textures Monolithic 0.02201 0.11393 0.20858 0.06173 0.13509
Regular 0.02779 0.09882 0.22535 0.05808 0.12608
Irregular 0.03350 0.09049 0.23017 0.05808 0.11989
Voids 0.03977 0.04409 0.62109 0.00001 0.08692

Shallowness f /s 0.866 0.02528 0.10904 0.22403 0.06030 0.13509
0.707 0.03041 0.10263 0.27335 0.04827 0.13100
0.500 0.03208 0.06903 0.43837 0.01624 0.10899
0.375 0.03713 0.06663 0.54309 0.00001 0.11104

Friction angle φ 40 0.03530 0.09793 0.29990 0.03392 0.13509
30 0.03964 0.08852 0.39990 0.01142 0.13509
20 0.04840 0.07404 0.50461 0.00001 0.13100

IQR values for all the levels of the parameters studied under the horizontal live load scenario are presented in
Table 1.

The two outliers observed for the monolithic piers (see Figure 8) correspond to the shallow and semi-circular
arch models with low-friction values. The outlier corresponding to the pointed arches group, 0.866, is related
to the voids pier texture with low-friction model. Finally, the outlier of the medium-friction value group has to
do with the voids texture piers and shallow arch model. Thus, low- to medium-friction values in combination
with poor-quality piers (voids) and shallow arches may result, in some real-life structure cases, in lower collapse
multiplier values than it may be expected. Masonry structures with this combination of critical values should be
given special consideration by practitioners studying and designing interventions to preserve them.

Similarly, looking at the Pareto chart in Figure 8(b) with the threshold at 2.1, it can be easily observed that
each single term of this chart has a significant importance with texture being the highest. Regarding two-way
interactions, the highest significance obtained is the one related to the combination friction-shallowness.



Rios et al. 15

Figure 9. Combined collapse mechanisms involving hinging at the arch and sliding at the first pier row of blocks (grid in m): (a)
IRR_375_20 and αc = 0.0581 and (b) REG_375_20 and αc = 0.0581.

4.2. Collapse mechanisms for the horizontal live load case

In terms of failure modes, four different collapse mechanisms were observed for the horizontal live load case
models:

• Combined hinging at the arch and sliding at the first blocks course of the pier.
• Combined hinging at the arch and sliding at the arch springs.
• Combined hinging at both arch and pier plus sliding at the arch near its key.
• Pure hinging at both arch and pier.

It is important to highlight at this point that the special upper-bound limit analysis implementation applied
on this paper has allowed to capture the first three types of failure mode involving sliding of the blocks (and
also the failure modes involving sliding of the other two load cases presented hereafter on this paper). This
would have not been possible if pure Heyman’s assumptions would have been adopted as was done in the past
by previous works [12, 28, 36–38]. This is in fact one of the main contributions of this paper to the advance of
knowledge and understanding regarding masonry failure phenomena.

The first failure mode observed for the buttressed arches subjected to a horizontal live load is characterized
by a rotation hinge at the intrados near the spring of the arch, a second rotation hinge at the extrados near the
arch key, followed by a third rotation hinge at the intrados near the opposite spring of the arch and sliding of the
entire top course of blocks at the top of the pier (see Figure 9). This collapse mechanism cannot develop on the
monolithic pier models (as monolithic piers are not discretized). Furthermore, it is typical of shallow arches,
which exert a relatively high horizontal thrust at the arch springs, in combination with low-friction values, which
are not high enough to prevent the sliding of the blocks receiving the thrust from the arch and transfer those
forces to lower block courses and incorporate the pier texture. Regardless of the pier discretization assumption,
either irregular or regular texture, the collapse multiplier value obtained is the same for this failure mode (α =
0.0581), which is the lowest of all α values computed for the buttressed arches subjected to horizontal live load
analyzed in this study.

The second type of collapse mechanism observed involved only the arch (see Figure 10). It is formed by
two intrados rotation hinges near each of the arch springs, an extrados rotation hinge close the arch key, and
sliding of the arch at one of its springs. The piers do not interact in this failure mode. Thus, regardless of
the pier discretization, whether it is irregular, regular, or monolithic, the same collapse multiplier is found
(α = 0.0617 for the semi-circular arch cases and α = 0.0754 for the shallow arch model). Similar to the
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Figure 10. Combined collapse mechanisms involving hinging at the arch and sliding at the arch springs (grid in m): (a) IRR_500_20
and α = 0.0617, (b) REG_500_20 and α = 0.0617, (c) MON_375_20 and α = 0.0754, and (d) MON_500_20 and α = 0.0617.

previous case of shallow arches, the failure is localized at the spring, and due to the relatively smaller thrust (i.e.
obtained from an increased arch rise), it slides only involving the springing block. While in the case of shallow
arch, the monolithic texture of the pier alternates the previous behaviour as there is no discretization at its top.
Low-friction values are also required for the appearance of such failure mode.

Another combined failure mode involving the sliding of masonry blocks is shown in Figure 11. This type
of collapse mechanism involves both the arch and one pier. A rotation hinge opens at the intrados of the arch
near one of its springs, then, there is sliding of the arch blocks near its key, and finally, the opposite side of the
structure rotates about a second rotation hinge that appears at the base of the pier. This collapse mechanism is
characteristic of highly pointed arches (arch shallowness of 0.866). As a different mass is mobilized when this
failure mode occurs (notice that for the discretized piers, the lower left blocks of the right piers do not move),
different values of collapse multipliers are computed for the various buttressed arches simulated. Once again it



Rios et al. 17

Figure 11. Combined collapse mechanisms involving hinging and sliding at both the arch and pier (grid in m): (a) IRR_866_20 and
α = 0.1057, (b) MON_866_20 and α = 0.1268, and (c) REG_866_20 and α = 0.1122.

is worth highlighting the fact that this mechanism is only found when low values of friction are assumed, which
are necessary for the sliding of the masonry blocks near the arch key.

Last, a pure rotation collapse mechanism which involved both the arch and one pier was also detected. It is
characterized by two rotation hinges at the arch intrados near its springs, one rotation hinge at the arch extrados
near its key and a fourth rotation hinge located at the base of one pier. This failure mode is characteristic of
the buttressed arches where a medium- to high-friction value was adopted. All buttressed arches with pier void
texture presented a pure rotation collapse mechanism regardless of the values adopted for the rest of parameters
for the horizontal live load case. The relatively high-friction value prevents sliding between blocks and forces
the formation of a pure rotation mechanism through the opening of aforementioned hinges. This is the only
failure mode that could be detected if Heyman’s assumptions were to be strictly applied.

4.3. Collapse multipliers for the concentrated vertical live load applied at mid-span case

The box/swarm plots of the collapse multipliers obtained for the concentrated vertical live load applied at mid-
span are shown in Figure 13. In accordance with what was observed for the previously discussed load case, a
positive relation can be observed between arch shallowness and friction values with respect to collapse mul-
tiplier values. Higher collapse multipliers are generally obtained for pointed arches than for semi-circular or
shallow arches. Especially, for this load scenario, the collapse multiplier values obtained for the semi-circular
arches seem to be slightly inferior in comparison with those obtained from the shallow arches, which is coun-
terintuitive. The trend observed for the different levels of the friction parameter is as expected, in other words,
the higher the friction value, the higher the collapse multiplier. Also in terms of pier texture, the values obtained
correspond to the hypothesis that piers following the “rule of art" (monolithic and regular texture) would result
in stronger structures than those that do not follow those principles (irregular and voids textures).

Similar data spread is observed within the pier groups. Slightly higher variability can be seen for the low
friction models in comparison with medium- and high-friction ones. Pointed arches with a shallowness value of
0.707 present a relatively smaller data spread in comparison with the rest of arch geometries. Table 2 presents
the computed IQRs for the concentrated vertical live load applied at mid-span case.

In the case of the Pareto chart in Figure 13(b) with the threshold at 2.1, again it is observed that each
single term of this chart has a significant importance with texture being the highest. Whereas regarding two-
way interactions, the highest significance obtained is the one related to the combination texture-shallowness.
Although, the combination shallowness-friction shows a similar significance but slightly lower.

For the concentrated live load applied at mid-span scenario, only one outlier was detected which was related
to the pointed arches group, 0.707, corresponding to the voids pier texture in combination with low-friction
value.
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Figure 12. Pure rotation collapse mechanisms involving hinging at both the arch and the pier (grid in m): (a) IRR_375_30 and
α = 0.0723, (b) MON_500_40 and α = 0.1090, (c) REG_707_30 and α = 0.1127, and (d) VOD_866_40 and α = 0.0991.

4.4. Collapse mechanisms for the concentrated vertical live load applied at mid-span case

In terms of failure modes, three different collapse mechanisms were observed for the concentrated vertical live
load applied at mid-span case models:
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(a) (b)

Figure 13. (a) Box plot and swarm plot of all collapse multipliers and (b) the Pareto chart of standardized effects for the concentrated
vertical live load applied at mid-span case.

Table 2. Interquartile ranges (IQRs) for all parameter levels for the concentrated vertical live load applied at mid-span case.

Parameter Level IQR Mean Coef. var. Min. Max.

Piers textures Monolithic 3.13442 4.21906 0.54385 0.76347 7.15929
Regular 2.92367 3.62221 0.58960 0.22888 6.59726
Irregular 2.80774 3.20732 0.61185 0.22888 6.06933
Voids 2.43201 1.79462 0.79965 0.00029 4.30723

Shallowness f /s 0.866 1.63223 5.67646 0.24776 3.02301 7.15929
0.707 1.02678 4.10822 0.27271 2.03132 5.51903
0.500 1.43927 1.51787 0.58347 0.43035 2.79468
0.375 2.22238 1.54066 0.80028 0.00029 3.23175

Friction angle φ 40 2.77096 3.71688 0.52055 0.90966 7.15929
30 2.76598 3.39442 0.58513 0.30840 7.15929
20 3.65854 2.52111 0.93765 0.00029 7.15929

1. Symmetrical combined hinging at the arch and sliding at the arch springs.
2. Symmetrical pure hinging at both arch and piers, also known as Mascheroni mechanism [58].
3. Pure hinging at both arch and pier.

The pure arch mechanism found for the concentrated live load applied at mid-span models is characterized
by the opening of three hinges at the arch (two at their intrados near the arches’ haunches and one at their
extrados in their key) and sliding at both arch springs. This mechanism is symmetrical, and since the piers do
not participate, it can appear on monolithic and regular texture piers, as well as in irregular texture piers as
shown in Figure 14. A typical characteristic of this failure mode is the low values of friction that are necessary
to allow sliding of the arch on top of the piers. Once again, as the piers are not involved in the failure mode,
same collapse multiplier values are obtained for similar arch geometries (αc = 0.7635 for semi-circular arches,
αc = 0.9577 for shallow arches, and αc = 4.3387 for pointed arches with a shallowness value of 0.707). It was
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Table 3. Interquartile ranges (IQRs) for all parameter levels for the concentrated vertical live load applied at quarter-span case.

Parameter Level IQR Mean Coef. var. Min. Max.

Piers textures Monolithic 1.25351 2.21709 0.41253 0.71662 3.78630
Regular 0.98695 2.02501 0.38971 0.71662 3.46972
Voids 1.28385 1.22262 0.64046 0.00039 2.51576
Irregular 0.75026 1.86855 0.37503 0.71662 3.13270

Shallowness f /s 0.375 1.48153 1.63901 0.62841 0.00039 3.03515
0.500 1.26665 1.38185 0.54983 0.45353 2.45827
0.707 1.03101 2.34715 0.33515 1.33661 3.78630
0.866 1.25726 1.96527 0.29889 1.29781 2.72308

Friction angle φ 40 0.60096 2.47495 0.30717 0.94880 3.78630
20 0.60341 1.06109 0.43225 0.00039 1.63085
30 0.56162 1.96391 0.33958 0.41923 3.03515

possible to capture this failure mode owing to the capabilities of the implemented upper-bound limit analysis
approach.

Medium- or high-friction values though led to the appearance of a different symmetric failure mode, which
is presented in Figure 15. This collapse mechanism involves both piers and the arch. It is characterized by the
opening of five rotation hinges: one at the arch extrados key, two at the arch intrados haunches, and two more
at each pier base. All buttressed arches with pier void texture presented a Mascheroni collapse mechanism
regardless of the values adopted for the rest of parameters for the vertical live load applied at mid-span case.
This mechanism can only appear on the models where symmetric loading conditions and symmetric geometrical
conditions are preserved, namely, monolithic, regular, and voids texture pier buttressed arches.

Last, those failure modes involving pure rotation hinges at both the arch and the piers that do not satisfy
the symmetric geometrical conditions (irregular texture piers) developed an asymmetrical four hinges collapse
mechanism as presented in Figure 16. In this collapse mechanism, a rotation hinge appears at the intrados near
both of the arch springs, a third hinge develops at the arch extrados key and a final hinge is created at the
opposite pier base.

4.5. Collapse multipliers for the concentrated vertical live load applied at quarter-span case

The box/swarm plots of the collapse multipliers obtained for the concentrated vertical live load applied at mid-
span are shown in Figure 17. The trend of collapse multiplier values for the pier texture and friction value
is similar as those found in previously discussed load case scenarios. On the other hand, although pointed
arches present higher αc values than shallow and semi-circular ones, it can be observed for this load case that
shallow arches and pointed (0.707) arches generally result in higher collapse multipliers than semi-circular and
pointed (0.866) arches, respectively. This may be explained based on the different failure modes encountered
and discussed in the following section.

Under the concentrated vertical live load applied at quarter-span scenario, the data spread of the monolithic
pier models turned out to be slightly larger than for the rest of pier textures analyzed. Similarly, shallow arches
showed a higher variability for the collapse multiplier values obtained with respect to the rest of arch geome-
tries. All levels of friction value resulted in similar data spread. Table 3 presents the computed IQRs for the
concentrated vertical live load applied at quarter-span case.

The outliers observed for this last load case scenario corresponded only to the friction parameter. Two
outliers resulted from the middle-friction value group, namely, models with voids pier texture and shallow or
semi-circular arches. Similarly, for the high-friction value group, the models with voids pier texture and shallow
or semi-circular arches turned out to be outliers. All these four outliers were found below their corresponding
group lower fences. On the other hand, one last outlier (related to the high-friction group and corresponding to
the monolithic pier and pointed arch 0.707) was found above its upper fence.

For this scenario assessing the Pareto chart in Figure 17(b) with the threshold at 2.1, again it is observed that
each single term of this chart has a significant importance but contrary to the others friction being the highest.
Furthermore, in contrast to the other scenarios, all the single and two-way interaction terms show significance
of the response. The highest among the two term interactions is achieved for the one between texture and
shallowness followed by texture-friction and last the one between shallowness and friction.
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Figure 14. Pure arch mechanisms, sliding at springs and three hinge openings (grid in m): (a) IRR_500_20 and αc = 0.7635,
(b) MON_375_20 and αc = 0.9577, (c) MON_500_20 and αc = 0.7635, (d) MON_707_20 and αc = 4.3387, (e) REG_500_20
and αc = 0.7635, and (f) REG_707_20 and αc = 4.3387.
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Figure 15. Symmetric pure hinging (Mascheroni) mechanisms involving both piers (grid in m): (a) MON_375_30 and αc = 3.2317,
(b) MON_866_40 and αc = 7.1593, (c) REG_500_30 and αc = 2.1414, (d) REG_707_40 and αc = 4.9966, (e) VOD_375_20 and
αc = 0.00029, and (f) VOD_866_40 and αc = 4.3072.
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Figure 16. Pure rotation collapse mechanisms involving hinging at both the arch and pier (grid in m): (a) IRR_866_40 and αc = 6.0693
and (b) IRR_500_30 and αc = 1.7484.

(a) (b)

Figure 17. (a) Box plot and swarm plot of all collapse multipliers and (b) the Pareto chart of standardized effects for the concentrated
vertical live load applied at quarter-span case.
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Figure 18. Pure sliding collapse mechanism involving the blocks under the applied concentrated live load and the first row of pier
blocks (grid in m): (a) IRR_375_20 and αc = 0.9570, (b) MON_375_20 and αc = 1.0227, and (c) REG_375_20 and αc = 0.9570.

4.6. Collapse mechanisms for the concentrated vertical live load applied at quarter-span case

In terms of failure modes, four different collapse mechanisms were observed also for the concentrated vertical
live load applied at quarter-span case models:

1. Pure sliding.
2. Combined hinging and sliding at the arch spring.
3. Combined hinging and sliding near the arch key.
4. Pure hinging at both arch and pier.

The pure sliding mechanism is perhaps the most interesting failure mode capture with the implemented
upper-bound limit approach of this paper. It occurs only within the arch (for the monolithic pier case) or within
the arch and upper block course of one pier (for the regular and irregular pier textures). The first sliding between
blocks appears at quarter-span, location where the concentrated vertical load is applied, whereas that a second
sliding happens at the arch spring (for the monolithic case) or at the first masonry course of the opposite pier
as shown in Figure 18. As only the arch and upper course of one pier are involved within this failure mode,
the collapse multiplier computed is the same regardless of the pier discretization (αc = 0.9570). A necessary
condition for this failure mode to arise is having a low-friction value which does not prevent the sliding between
blocks, in combination with a shallow arch that exerts enough horizontal thrust at its spring.

The other three mechanisms found for the concentrated vertical load applied at quarter-span are simi-
lar to those described in the previous sections. See Figures 19–21 in comparison with Figures 10–12 or 16,
respectively.

4.7. Computational efficiency

Last, in this section, the computational burden and the efficiency of this study utilizing the in-house ALMA code
is summarized. All the analyses have been run within the same personal computer machine with the following
characteristics: Intel® CoreTM i7-10750H CPU 2.60 GHz and 32 GB or RAM. The summary of runtime is given
in Table 4, where the time (in seconds) is averaged for every three levels of friction and the results consist the
runtime for all the live load scenarios. The number of blocks varies from 22 to 136, while the time taken per
analysis varies between 0.57 and 43.8 s.

5. Conclusion
In this paper, a parametric analysis based on the implementation of an upper-bound limit analysis has been
performed to study the structural response and failure modes of masonry arches over piers. The parameters
taken into account were the pier texture (monolithic, regular, irregular, and voids), arch shallowness (0.375,
0.500, 0.707, and 0.866), and friction angle values (20◦, 30◦, and 40◦). Furthermore, the buttressed arches were
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Figure 19. Combined hinging and sliding at arch spring collapse mechanism (grid in m): (a) IRR_500_20 and αc = 0.7166,
(b) MON_500_20 and αc = 0.7166, and (c) REG_500_20 and αc = 0.7166.

Figure 20. Combined hinging and sliding near the arch key collapse mechanism (grid in m): (a) VOD_866_40 and αc = 2.5158,
(b) REG_707_30 and αc = 2.5049, and (c) MON_866_40 and αc = 2.7231. (d) REG_707_20 and αc = 1.6308.

analyzed under three different load case scenarios, namely, horizontal live load, vertical live load applied at
mid-span, and vertical live load applied at quarter-span. All load scenarios considered the self-weight of the
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Figure 21. Pure rotation collapse mechanisms involving hinging at both the arch and the pier (grid in m): (a) VOD_707_40 and
αc = 2.2322 and (b) MON_500_30 and αc = 2.4583.

Table 4. Computational time taken for the analysis.

Average time (s) for:
Texture Shallowness No. blocks Hor VerMid VerQua

MON 0.375 22 0.60 0.60 0.59
0.500 22 0.58 0.57 0.57
0.707 26 0.81 0.87 0.81
0.866 26 0.80 0.84 0.79

REG 0.375 121 32.40 32.63 31.93
0.500 121 30.63 31.63 31.47
0.707 125 34.37 35.90 34.30
0.866 125 34.17 35.47 34.17

IRR 0.375 132 39.37 39.33 39.93
0.500 132 40.07 40.33 38.90
0.707 136 43.80 43.10 42.40
0.866 136 41.93 43.03 41.17

VOD 0.375 82 9.61 9.39 9.54
0.500 82 9.68 9.73 9.19
0.707 86 11.03 11.10 10.53
0.866 86 11.10 11.03 10.50

Hor: horizontal live load; VerMid: vertical live load at mid-span; VerQua: vertical live load at quarter-span.

structure as well. A full composite design was used to combine the different levels of each parameter for every
load scenario, thus obtaining a total of 144 different models.

The main conclusions drawn from the results obtained are:

• All parameters studied (pier texture, arch shallowness, and friction values) showed a significant effect on
the structural response of buttressed arches regardless of the load scenario. The structural integrity and the
soundness of piers as a result of the “rule of art” provide a crucial aspect in the overall behavior and they
are key aspects to be considered during inspection and assessment of such structures. Furthermore, the
disposition of such blocks in the formation of different masonry arrangements (texture) plays an important
role on the outcome that is not taken into account with approaches that consider masonry material as a
homogeneous media.

• Different load scenarios account for unique collapse mechanisms, i.e. only-arch mechanism for the vertical
live load applied at mid-span and pure sliding mechanism for the vertical live load applied at quarter-span.
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• Some mechanisms, namely, pure rotation and combined hinging-sliding, are common to all three different
load scenarios analyzed. In such cases, it can be stated that accurate and proper tools of assessment are
necessary while studying and analyzing the behavior of such complex and intricate structures.
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