Man vs. AI: An in silico study of polyp detection performance
Smedsrud, Pia Helen; Espeland, Håvard; Berstad, Tor Jan; Petlund, Andreas; de Lange, Thomas; Riegler, Michael; Halvorsen, Pål
Chapter, Peer reviewed, Conference object, Journal article
Accepted version
View/ Open
Date
2023Metadata
Show full item recordCollections
Original version
https://doi.org/10.1109/CBMS58004.2023.00307Abstract
AI-based colon polyp detection systems have received much attention, and several products and prototypes report good results. In silico verification is a crucial step when developing such systems, but very few compare human versus AI performance. This paper, therefore, describes methods and results for an in silico test of an AI model with two different versions for polyp detection in colonoscopy and compares them to the performance of endoscopist doctors who reviewed the same colonoscopy video clips. The two versions have different thresholds for false positive rate reduction. Our models perform polyp detection within the range of the endoscopists’ performance, although faster, showing a potential for use in a clinical setting. For the AI and the endoscopists alike, the results show a trade-off between high sensitivity and high specificity; to achieve perfect detection, one will also get abundance of false positives. This can cause alarm fatigue in a clinical setting.