Show simple item record

dc.contributor.authorZhang, Jianhua
dc.contributor.authorChen, Peng
dc.date.accessioned2022-05-03T11:18:46Z
dc.date.available2022-05-03T11:18:46Z
dc.date.created2022-02-18T16:05:48Z
dc.date.issued2021-04-14
dc.identifier.citationIFAC-PapersOnLine. 2020, 53 (2), 10229-10235.en_US
dc.identifier.issn2405-8963
dc.identifier.urihttps://hdl.handle.net/11250/2993879
dc.description.abstractIn recent years, emotion recognition has attracted increasing interest from researchers from diverse fields. Because of their intrinsic correlation with emotions, physiological signals based emotion recognition method is not susceptible to the so-called social masking and thus more objective than traditional visual, audio or text data based methods. In particular, EEG signals are more responsive to emotion fluctuations than other peripheral physiological signals. In this paper, a 4-class EEG-based emotion classification problem is considered. Firstly the subjective data clustering is performed to identify the optimal number of emotional states. Then wavelet and nonlinear dynamics analyses are used to extract EEG features of emotions. Finally, we consider the brain areas for emotion generation and show that the use of only a small number of EEG electrodes placed on the frontal area of scalp can achieve a 4-class emotion classification accuracy of higher than 90%.en_US
dc.language.isoengen_US
dc.publisherInternational Federation of Automatic Controlen_US
dc.relation.ispartofseriesIFAC-PapersOnLine;Volume 53, Issue 2, 2020
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectEmotion recognitionen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectWavelet energyen_US
dc.subjectNonlinear dynamicsen_US
dc.subjectFeature dimensionality reductionen_US
dc.titleSelection of Optimal EEG Electrodes for Human Emotion Recognitionen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1016/j.ifacol.2020.12.2753
dc.identifier.cristin2003477
dc.source.journalIFAC-PapersOnLineen_US
dc.source.volume53en_US
dc.source.issue2en_US
dc.source.pagenumber10229-10235en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal