Vis enkel innførsel

dc.contributor.authorGulden Dahl, Annelene
dc.contributor.authorNichele, Stefano
dc.contributor.authorMello, Gustavo
dc.date.accessioned2021-12-02T11:54:35Z
dc.date.available2021-12-02T11:54:35Z
dc.date.created2021-12-01T11:29:58Z
dc.date.issued2021
dc.identifier.citationLecture Notes in Networks and Systems, 2021, 296, 549-558en_US
dc.identifier.isbn978-3-030-82195-1
dc.identifier.issn2367-3370
dc.identifier.urihttps://hdl.handle.net/11250/2832561
dc.description.abstractRemoving skull artifacts from functional magnetic images (fMRI) is a well understood and frequently encountered problem. Because the fMRI field has grown mostly due to human studies, many new tools were developed to handle human data. Nonetheless, these tools are not equally useful to handle the data derived from animal studies, especially from rodents. This represents a major problem to the field because rodent studies generate larger datasets from larger populations, which implies that preprocessing these images manually to remove the skull becomes a bottleneck in the data analysis pipeline. In this study, we address this problem by implementing a neural network-based method that uses a U-Net architecture to segment the brain area into a mask and removing the skull and other tissues from the image. We demonstrate several strategies to speed up the process of generating the ground-truth of the dataset using watershedding, and several strategies for data augmentation that allowed to train robustly the U-Net to perform the segmentation. Finally, we deployed the trained network freely available.en_US
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofIntelligent Systems and Applications, Proceedings of the 2021 Intelligent Systems Conference (IntelliSys 2021) Volume 1
dc.subjectNeural networken_US
dc.subjectDeep learningen_US
dc.subjectBrain extractionen_US
dc.subjectSkull strippingen_US
dc.titleA deep learning-based tool for automatic brain extraction from functional magnetic resonance images of rodentsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1962536
dc.source.journalLecture Notes in Networks and Systemsen_US
dc.source.volume296en_US
dc.source.pagenumber549-558en_US
dc.relation.projectNorges forskningsråd: 270961en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel