Vis enkel innførsel

dc.contributor.authorNascimento, Diego C.
dc.contributor.authorPinto-Orellana, Marco Antonio
dc.contributor.authorLeite, Joao P.
dc.contributor.authorEdwards, Dylan J.
dc.contributor.authorLouzada, Francisco
dc.contributor.authorSantos, Taiza E. G.
dc.date.accessioned2021-05-26T09:39:48Z
dc.date.available2021-05-26T09:39:48Z
dc.date.created2021-03-17T15:58:23Z
dc.date.issued2020-11-26
dc.identifier.citationFrontiers in Systems Neuroscience. 2020, 14, (1-14).en_US
dc.identifier.issn1662-5137
dc.identifier.urihttps://hdl.handle.net/11250/2756418
dc.description.abstractSparse time series models have shown promise in estimating contemporaneous and ongoing brain connectivity. This paper was motivated by a neuroscience experiment using EEG signals as the outcome of our established interventional protocol, a new method in neurorehabilitation toward developing a treatment for visual verticality disorder in post-stroke patients. To analyze the [complex outcome measure (EEG)] that reflects neural-network functioning and processing in more specific ways regarding traditional analyses, we make a comparison among sparse time series models (classic VAR, GLASSO, TSCGM, and TSCGM-modified with non-linear and iterative optimizations) combined with a graphical approach, such as a Dynamic Chain Graph Model (DCGM). These dynamic graphical models were useful in assessing the role of estimating the brain network structure and describing its causal relationship. In addition, the class of DCGM was able to visualize and compare experimental conditions and brain frequency domains [using finite impulse response (FIR) filter]. Moreover, using multilayer networks, the results corroborate with the susceptibility of sparse dynamic models, bypassing the false positives problem in estimation algorithms. We conclude that applying sparse dynamic models to EEG data may be useful for describing intervention-relocated changes in brain connectivity.en_US
dc.description.sponsorshipThis research was partially supported by CNPq, FAPESP, and CAPES from Brazil. This research was carried out using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI).en_US
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.ispartofseriesFrontiers in Systems Neuroscience;volume 14
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectState space modelsen_US
dc.subjectMultilayer networksen_US
dc.subjectHigh-dimensional time series modelsen_US
dc.subjectTranscranial direct current stimulationsen_US
dc.subjectDynamic graphical modelsen_US
dc.titleBrainWave Nets: Are Sparse Dynamic Models Susceptible to Brain Manipulation Experimentation?en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 Nascimento, Pinto-Orellana, Leite, Edwards, Louzada and Santos.en_US
dc.source.articlenumber527757en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.3389/fnsys.2020.527757
dc.identifier.cristin1898778
dc.source.journalFrontiers in Systems Neuroscienceen_US
dc.source.volume14en_US
dc.source.pagenumber1-14en_US
dc.relation.projectFAPESP: 2013/07375-0en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal