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Sparse time series models have shown promise in estimating contemporaneous and

ongoing brain connectivity. This paper was motivated by a neuroscience experiment

using EEG signals as the outcome of our established interventional protocol, a new

method in neurorehabilitation toward developing a treatment for visual verticality disorder

in post-stroke patients. To analyze the [complex outcome measure (EEG)] that reflects

neural-network functioning and processing in more specific ways regarding traditional

analyses, we make a comparison among sparse time series models (classic VAR,

GLASSO, TSCGM, and TSCGM-modified with non-linear and iterative optimizations)

combined with a graphical approach, such as a Dynamic Chain Graph Model (DCGM).

These dynamic graphical models were useful in assessing the role of estimating the brain

network structure and describing its causal relationship. In addition, the class of DCGM

was able to visualize and compare experimental conditions and brain frequency domains

[using finite impulse response (FIR) filter]. Moreover, using multilayer networks, the

results corroborate with the susceptibility of sparse dynamic models, bypassing the false

positives problem in estimation algorithms. We conclude that applying sparse dynamic

models to EEG data may be useful for describing intervention-relocated changes in brain

connectivity.

Keywords: state space models, multilayer networks, high-dimensional time series model, transcranial direct

current stimulation, dynamic graphical model

1. INTRODUCTION

In the area of neuroscience, work related to the brain network structure, as well as its
dynamics, has increased due to technological developments (high resolution and storage capacity).
Notwithstanding, the field aims to understand “how” and “why” the effects/events occur based on
learning probabilistic connection structures to assume some feasible causal inference (Pearl, 2014).
There is thus an immediate urge to map its complex organization, and two types of connectivity
are commonly studied: functional and dynamic. Functional connectivity is a statistical measure
of the correlation within observations in the same time-lapse, and dynamic connectivity is the
relationship among the measurements compared with their previous value impact.

Thus, the links among anatomical parcellations of the brain are described by their similarity
patterns; for instance, a channel represents the activity of a group of neurons, and it is measured
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noise in the brain signal and describing different brain tasks as
oscillatory bands.

Initially, we filtered the raw EEG signals, adopting the FIR
with pass-band filter, utilizing five fundamental bands of brain
waves (alpha, beta, delta, gamma, and theta). Figure 5 shows only
the filtered signals related to the post-stimulation period, whereas
elucidating the difference in band oscillation (signal phases) for
each channel.

The channels located on the same brain hemisphere side
as the neuromodulation (tDCS), presented greater oscillation.
Thus, this dynamic may be translated/associated with the
electrical transferred activity (energetic dissipation). This activity
is expected given the rise of entropy through electrical synergy in
this area (Nascimento et al., 2019).

The study of the human brain has been developing and
generates an enormous amount of data, however, revealing the
information extracted from this complex system is not trivial and,

often, aggregating this information may lead to erroneous results
(Fiecas and Ombao, 2011; Castruccio et al., 2016; Shen et al.,
2016). Alternatively, the multilayer network approach provides
a mathematical background to model and analyze complex data
with multivariate and multi-scale information (Kivelä et al.,
2014). Multiplex network shapes can be formatted using (i)
activity in different frequency bands, (ii) time-varying activity,
(iii) activity with respect to different tasks, and (iv) structural and
functional connectivity.

Thus, estimations regarding the representation of a joint
distribution of random variables are needed (the network
structure). This procedure seeks to describe the causal
relations across the brain regions. The Vector Autoregression
(VAR) model would be appropriate to describe a brain
connectivity network, nonetheless, it may present a high curse
of dimensionality in large sets. This class of models presents a
significant number of parameters to be estimated. Additionally,

FIGURE 5 | Bandpower from the filtered EEG signals (top left) considering the alpha band, (top right) filter in the beta band, (middle left) in the delta band, (middle

right) in the gamma band, and (bottom center) filter in the theta band. The EEG electrodes placed on the right-side brain hemisphere present higher dynamic/variation

(channels 164, 173, and 183), related to post-2 mA stimulation.
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shrinkage either in the data (such as PCA) or parameter spaces
(like GLASSO and TSCGM) is not straightforward and may lead
to misleading information.

The graphical LASSO (GLASSO) model, proposed by
Friedman et al. (2008), estimates that matrices tended to be
different from those determined by a classical VAR method.
It was noticeable that non-sparse VAR estimation not only
increased the sparsity of the effective connectivity matrix
but also “created links” that did not appear before (based
on our empirical analysis). These models present a high
sensitivity to non-stationary series and might mislead the
estimation point connections (given the shrinkage on the

covariance matrix–Contemporaneous Effect–,thus changing the
dynamic interactions).

Alternatively, TSCGM and TSCGM-modified was performed
using a non-linear optimization over the log-likelihood, and
iterative optimizing the log-likelihood (with l1-norm and SCAD
penalization, not only in the covariance matrix) (Abegaz and
Wit, 2013). Figure 6 shows the supra-adjacency matrix related
with the functional connectivity, across seven EEG channels,
comparing seven estimation methods (classic VAR, GLASSO,
TSCGM, TSCGM non-linear l1-norm, TSCGM non-linear
SCAD, TSCGM-iterative l1-norm, and TSCGM-iterative SCAD),
for instance, only the performance of a single band (alpha).

FIGURE 6 | Functional connectivity as the supra-adjacency matrix in which rows and columns form groups from the seven filtered EEG alpha frequency-band signals,

throughout the methods (VAR, GLASSO, TSCGM, TSCGM non-linear l1-norm and SCAD, and TSCGM-iterative l1-norm and SCAD). The VAR method is the

reference, whereas the target is to maintain the strong links and remove the weak using sparsity. The TSCGM non-linear provided a competitive insight preserving the

structure and function of the human brain.
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The VAR model includes weak linear dependencies, as
mentioned in section 2.2, and it is desirable to use a
data-dependent threshold to remove the weak connections
without losing information. GLASSO and TSCGM led to
different interpretations, compared to the VAR-estimated matrix.
Nevertheless, TSCGM-modified with non-linear optimization
using both l1-norm and SCAD penalization maintained the
strong links presented in the VAR but also eliminated the weak
ones, therefore suggesting a competitive performance among the
others. The same cannot be said for the TSCGMs-modified with
iterative optimization.

Figure 7 shows the estimated brain dynamic/effective
connectivity among the seven filtered channels (top figures)
during the resting state and (bottom figures) post-stimulation,
adopting the performance of TSCGM non-linear optimization

using SCAD. That is, the brain illustrates with the correlation
matrices the neuronal information floating connectivity (in
different frequency-band signals).

No visual modification can be observed through the analysis
of the alpha, beta, and delta bands, according to Figure 7.
Gamma and theta bands show a slight change (considering the
new estimated coefficient intensity during post-stimulus). In
agreement with the present findings, previous results showed
gamma band change after brain stimulation (Santos et al., 2018).

The results were similar to the findings observed in patients
after stroke. Our data thus indicate that the proposed approach
may be a promising tool for methodological-analysis toward the
treatment of verticality error in stroke patients (Santos-Pontelli
et al., 2016; Santos et al., 2018). In previous studies, Nascimento
et al. (2019) compared HD-tDCS dose-response, adopting the

FIGURE 7 | Multiplex EEG signals, per bandpower, (top panels) resting state and (bottom panels) after unilateral HD-tDCS–Anodal Center 2 mA–stimulation.

Comparing the resting state vs. post-stimulation, we obtained additional links within the gamma and theta bands during post-stimulus, which suggests an outgrowth

in the electrical brain dynamic.
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same protocol study, which included the placebo/shamHD-tDCS
trail response, that by its statistical results, it helped to validate the
sparse dynamic models’ feasibility effects search of HD-tDCS and
its pure effect.

4. FINAL REMARKS

This study aimed to implement and discuss the comparison
of sparse methods toward parameter dimension shrinkage.
Nevertheless, preserving information from empirical data
is necessary to develop elements for brain manipulation
intervention related to the perception of verticality and
posturography as a novelty aimed at the recovery of post-
stroke patients. The multilayer network approach enabled us
to integrate the information retained given the electrical post-
stimulus synergy (through different frequency bands).

The findings obtained in this paper contribute to the process
of estimating the neuronal circuit connections, with robust
inference and computational feasibility. Estimating a network
structure can be a non-trivial (Chickering, 1996), highly complex
task (Rodrigues et al., 2016), despite the fact that these sparse
models showed to be promising, bypassing the false positives link
estimation (results in Figure 6).

As demonstrated in the present work, the sparsemodels (using
a dynamic linear model) combined with the frequency domain
approach represented as the multilayer network implement to
the neuroscience field the capability of interpreting/estimating
the dynamic of the neural circuits based on EEG data in
a comprehensive way. Moreover, we aimed to contribute
with more in-depth data analysis toward the protocol (Santos
et al., 2018), discussing its feasibility, enlightening the human
manipulation intervention response dynamic.

This work is limited given that conclusions are based on
a single participant response, whereas future works intend
to extend this modeling using hierarchical models and
interpretation of the entire sample and protocol. Liao et al.
(2017) showed that the modular structures of brain networks
completely vary across individuals. Thus, hierarchical modeling
is required in the form of a set of state vectors for each chain
component, as an exchangeable sample with the common
mean. Therefore, future work shall explore the time-varying
parameters, enclosed by the dynamic linear models, in a
hierarchical version, suitable for interventions, such as those
presented here, indexed in time.
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