Vis enkel innførsel

dc.contributor.authorHolm, Håvard Heitlo
dc.contributor.authorSætra, Martin Lilleeng
dc.contributor.authorBrodtkorb, André R.
dc.date.accessioned2021-01-30T16:20:00Z
dc.date.accessioned2021-03-08T12:11:11Z
dc.date.available2021-01-30T16:20:00Z
dc.date.available2021-03-08T12:11:11Z
dc.date.issued2020-06-10
dc.identifier.citationHolm HH, Sætra ML, Brodtkorb A: Data Assimilation for Ocean Drift Trajectories Using Massive Ensembles and GPUs. In: Klöfkorn R, Keilegavlen E, Radu FA, Fuhrmann J. Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 2020. Springer p. 715-724en
dc.identifier.isbn978-3-030-43651-3
dc.identifier.isbn978-3-030-43650-6
dc.identifier.issn2194-1017
dc.identifier.issn2194-1009
dc.identifier.urihttps://hdl.handle.net/10642/9916
dc.description.abstractIn this work, we perform fully nonlinear data assimilation of ocean drift trajectories using multiple GPUs. We use an ensemble of up to 10000 members and the sequential importance resampling algorithm to assimilate observations of drift trajectories into the underlying shallow-water simulation model. Our results show an improved drift trajectory forecast using data assimilation for a complex and realistic simulation scenario, and the implementation exhibits good weak and strong scaling.en
dc.description.sponsorshipThis work is supported by the Research Council of Norway (RCN) through grant number 250935 (GPU Ocean). The computations in this paper were performed on equipment provided by the Experimental Infrastructure for Exploration of Exascale Computing (eX3 ), which is financially supported by the RCN under contract 270053. The source code for the methods and experiments described in this paper is available under an GNU free and open source license released under https://doi.org/10.5281/zenodo.3591850.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesSpringer Proceedings in Mathematics & Statistics;volume 323
dc.rightsAuthors whose work is accepted for publication in a non-open access Springer book may deposit their author’s accepted manuscript (AAM) in their institutional or funder repository.en
dc.subjectParticle filtersen
dc.subjectFinite volume methodsen
dc.subjectShallow water simulationsen
dc.titleData Assimilation for Ocean Drift Trajectories Using Massive Ensembles and GPUsen
dc.typeConference object
dc.date.updated2021-01-30T16:20:00Z
dc.description.versionacceptedVersionen
dc.identifier.doihttps://doi.org/10.1007/978-3-030-43651-3_68
dc.identifier.cristin1816211
dc.relation.projectIDNotur/NorStore: NN9550K
dc.relation.projectIDNorges forskningsråd: 250935
dc.relation.projectIDNorges forskningsråd: 270053
dc.source.isbn978-3-030-43650-6


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel