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Abstract In this work, we perform fully nonlinear data assimilation of ocean drift
trajectories using multiple GPUs. We use an ensemble of up to 10000 members and
the sequential importance resampling algorithm to assimilate observations of drift
trajectories into the underlying shallow-water simulation model. Our results show an
improved drift trajectory forecast using data assimilation for a complex and realistic
simulation scenario, and the implementation exhibits good weak and strong scaling.
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1 Introduction

We present a proof-of-concept framework for performing fully nonlinear data as-
similation of ocean drift trajectories into a shallow-water model. Forecasting drift
trajectories in the ocean is an integral part of offshore preparedness services, and
the forecasts are used in, e.g., search and rescue operations, oil spill tracking, and
operations involving large floating structures [1]. Our approach is to use massive
ensembles of simplified ocean models and assimilate observations using a particle
filter based on the sequential importance resampling algorithm [2]. We first generate
a massive ensemble of perturbed ocean states and simulate each ensemble member
forward in time until we have an observation. Next, we use the particle filter to dis-
card ensemble members that match poorly with the observation, and then reinitialize
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the discarded members based on the simulated states that have a good match. We
continue the simulation until the next available observation and repeat the process.

Particle filters as used here are embarrassingly parallel and require synchroniza-
tion only when resampling individual ensemble members. We therefore use MPI
to distribute ensemble members to different nodes, and each member is simulated
forward in time using a modern explicit finite-volume scheme. The scheme is imple-
mented on the GPU in a massively data-parallel fashion and includes all the complex
source terms required for oceanographic simulations of real-world domains [3].

Our experiments show significantly increased forecast skill compared to both
deterministic and Monte Carlo simulations, and we are able to run experiments with
10 000 ensemble members on the Nvidia DGX-2 server, which has 16 GPUs [4].
The implementation exhibits good weak and strong scaling and is possible to extend
with more complex perturbation methods with minimal effort.

2 Data assimilation of ocean drift observations

Sequential importance resampling is an example of a particle filter for fully non-
linear data assimilation (see the recent review paper by Vetra-Carvalho et al. [5]
on ensemble-based data assimilation techniques). A benefit of the algorithm is that,
contrary to e.g., the ensemble Kalman filter [6], it does not manipulate variables of
individual simulations that match well with available observations. This means that
the resulting ensemble contains ocean states that are consistent with respect to the
physics of the model. Furthermore, particle filters do not make any assumptions on
linearity in the physical model or Gaussian probability distributions. However, the
algorithm requires a large number of ensemble members as the probability that an
individual ensemble member matches an observation is small. In fact, the required
number of members increases exponentially with the number of observations [7, 2].
This means that it is most suitable for nonlinear problems with few observations,
which is the typical situation for our target application area.

General ocean circulation models, such as ROMS [8], conserves mass, three di-
mensional momentum, salinity, and temperature, and operational setups typically
require large computational resources to run even a single simulation. Herein, we
investigate using simplified ocean models through the two-dimensional shallow-
water equations, which were used operationally in the early days of computational
oceanography [9]. These simplified ocean models are suitable for short-term fore-
casts in which the ocean can be modeled as a barotropic fluid, and they can be
efficiently simulated using GPUs. A further challenge is that even the operational
models often have limited forecast abilities due to by uncertain initial conditions,
model parameters and forcing. By using a simplified model instead of the full three
dimensional equations, we can afford to run a much larger ensemble of perturbed
ocean states that can give us a more detailed description of the uncertainties in ocean
forecasts that can be used as a complement to the current operational methods [10].

We have developed a GPU-based simulation framework that uses operational
ocean forecasts for initial and boundary conditions, bathymetry, and forcing [3].
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The framework is an extension of the high-resolution, central-upwind finite-volume
scheme proposed by Chertock et al. [11], which is well-balanced with respect to
steady states in which the Coriolis force balances a non-zero momentum and water
surface displacement (the geostrophic balance). The scheme uses H as the water
depth, η as the deviation from mean sea level, and hu and hv as the momentum
along the abscissa and ordinate, respectively. We can perturb this ocean state using
the approach in [12], in which we first generate a smooth random field, ∆η , for
each ensemble member, representing deviations of the ocean surface elevation. We
continue by computing the momentum required to balance this perturbation, namely

∆hu j,k =−
gH j,k

f j,k

∆η j,k+1−∆η j,k−1

2∆y
, ∆hv j,k =

gH j,k

f j,k

∆η j+1,k−∆η j−1,k

2∆x
, (1)

and finally add these perturbations to the state variables.
Using the perturbations from (1), we generate an ensemble of ocean states

and use the ensemble ψn = {ψn
0 ,ψ

n
1 , ...,ψ

n
N} at time tn as an approximation to

the probability density function (pdf) p(ψn) of our ocean state. If we have an
observation yn of part of the state (e.g., one drift trajectory), we can improve the
probabilistic forecast by using the conditional pdf p(ψn|yn). Using Bayes theorem,
p(ψn|yn)= p(yn|ψn)p(ψn)/p(yn), we can write p(ψn|yn) as a weighted ensemble1:

p(ψn|yn) ∝

N

∑
i=1

p(yn|ψn
i )

∑
N
j=1 p(yn|ψn

j )
δ (ψn−ψ

n
i ) =

N

∑
i=1

wn
i δ (ψn−ψ

n
i ), (2)

in which δ is the Dirac’s delta function. The weights, wn
i , reflect how well ensem-

ble member i matches the observation, and members with very low weights have
a negligible contribution to p(ψn|yn). Sequential importance resampling therefore
discards members with low weights and duplicates members with high weights to
maintain a higher sample density in the high-probability areas.

A challenge with sequential importance resampling is the so-called curse of di-
mensionality, as we are operating in a very high-dimensional space. The particle
filter is prone to ensemble collapse, in which the ensemble quickly reduces into
only a very few significant states and thereby only has marginally better predictive
skill than a purely deterministic simulation [7, 2]. This means that we need a much
larger number of ensemble members compared to the number of observations. A
major benefit, however, is that the particle filter makes no changes to the states of
individual ensemble members during the data assimilation phase. This means that
the perturbation strategy is not limited by the data assimilation method.

Fig. 1 gives an overview of the ensemble prediction system used in this paper.
We use the sea-surface elevation and vertically integrated ocean currents from the
operational ocean forecast provided by the ROMS-based NorKyst-800 model sys-
tem [13] as initial and boundary conditions, and give an independent perturbation
to each ensemble member to represent the uncertainty in the initial condition. Fur-
thermore, we also use the same bathymetry and wind forcing as NorKyst-800. The

1 We have ignored the marginal probability as it only serves as a normalization constant.
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Fig. 1: Algorithmic overview of the simulation, data assimilation and drift trajectory
forecast. Straight lines are deterministic simulation, wiggly lines are perturbations,
and dashed lines show ensemble members that are kept during the resampling phase.

true drift trajectories are generated by OpenDrift [14] using the vertically integrated
ocean currents from the hourly NorKyst-800 data, which means that the underlying
physical model for the simulated truth is significantly different from our much sim-
pler shallow-water model. From these drift trajectories, we estimate the underlying
direction and velocity of the ocean currents and use this as an observation in the
particle filter. We assume that the observations contain a Gaussian error with stan-
dard deviation σ and that they are independent from each other. The weight of each
ensemble member is then computed as

wi = α · exp

(
−0.5

(
‖obs− sim‖

σ

)2
)
, (3)

in which we use the Euclidean norm to compute the distance between the observed
and simulated momentum. Furthermore, α is the normalization constant such that
∑

Ne
i=1 wi = 1. There are several strategies for choosing which ensemble members

to discard and duplicate (see [2] and references therein), and we use the residual
resampling scheme [15]. Between observation times, each ensemble member runs
independently and deterministically, which means that we need to perturb the du-
plicated ensemble states during the resampling stage.

3 Results

We test our ensemble prediction system using a domain along the coast of Northern
Norway. The domain consists of 315× 630 grid cells with 800 m horizontal reso-
lution, which is the same horizontal resolution as the operational ocean circulation
model that we use for initial and boundary conditions. We run 48 hours of data as-
similation and use the final observed positions for the drifters as initial positions for
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24 hour trajectory forecasts. To avoid that the ensemble collapses during resampling,
we need to balance the number of drifters we observe with the ensemble size. Here
we run experiments with 1000 and 10000 ensemble members and limit ourselves to
four drifters. All experiments are run on an Nvidia DGX-2 server, equipped with 16
Tesla V100 GPUs and two CPUs, each with 24 cores.

Fig. 2 Drift trajectories of
four drifters over a three
day period shown in the
computational domain used
in all our experiments. Red
and yellow colors indicates
strong and weak currents,
respectively. Dots mark start
positions and crosses end
positions, and the values
along the axes are in km. 0 100 200 300 400 500
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Ensemble forecasts of drift trajectories We run three different experiments to il-
lustrate the effect of data assimilation on forecasting of drift trajectories. The first
is a Monte-Carlo experiment, meaning that we do not assimilate any observations
during the first 48 hours. The second and third experiments are with data assimila-
tion, and we use observations to run a particle filter every 30 minutes and 5 minutes,
respectively. Fig. 2 shows the domain and the drift trajectories used as the truth.

Fig. 3 shows the forecasted drift trajectories for the four drifters in each of the
three ensemble experiments with 1000 members, compared to a single deterministic
forecast in green (dashed) and the truth in red (dash-dotted). The results show vari-
able impact from data assimilation between the drifters. We see most positive effect
for drifters three and four, and marginal improvement for drifter two, whereas the
forecast for drifter one seems to be worse with data assimilation. The initial fore-
cast for the first hour for drifter one, however, is significantly improved by the data
assimilation, but our model is unable to capture the downward turn shortly into the
forecast. This makes the ensemble perform worse in the long run when compared
to the deterministic forecast. The results for drifters three and four show improve-
ments when using observations in intervals of five minutes compared to 30 minutes.
Finally, Fig. 4 shows how increasing the ensemble size to 10000 members signif-
icantly improves the forecast for drifter 2. Increasing the ensemble size increases
the sampling of the pdf, and thereby also the chance that the true state is better
represented by the ensemble.

Weak and strong performance scaling We evaluate the ensemble-level parallel
performance by measuring the time spent in the data assimilation and forecasting
parts of the code, running one hour of data assimilation with observations every
five minutes and one hour of drift forecast. Note that the forecast contains no com-
munication and should therefore show close to perfect scaling, whereas the data
assimilation includes serial resampling and communication. For the weak scaling
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Fig. 3: Ensemble forecasts of drift trajectories with 1000 members in light blue,
with the red (dash-dotted) line representing the truth, the green (dashed) line as
the deterministic forecast, and the dark blue line as the ensemble mean. The four
drifters are shown in separate rows, with the columns representing the three different
experiments. From left to right: Monte Carlo without data assimilation, assimilation
of observations every 30 minutes, and assimilation of observations every 5 minutes.
The distance between the markers along the axis are one km.

experiment, we fix the per-process ensemble size at 20 members and increase the
number of processes from one to 16. In the strong scaling experiment, the global en-
semble size is fixed at 960 members and we vary the number of processes on which
they are distributed. Each process utilizes one GPU. The results are shown in Fig. 5,
with both experiments showing a 14x speedup by using 16 GPUs for the forecast.
The speedup for data assimilation is nearly as good as the forecast, which means
that the data assimilation does a good job preserving the parallel performance.
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Fig. 4: Ensemble forcasting with 1000 ensemble members (left) and 10000 members
(right). When using 10000 ensemble members, the forecast is significantly improved
for drifter 2, while the effect is smaller for the other three drifters.
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Fig. 5: The graphs show weak and strong scaling, using 1–16 GPUs on an Nvidia
DGX-2 server. The top dotted line illustrates perfect strong scaling.

4 Discussion and summary
We have presented a framework for fully nonlinear data assimilation of ocean drift
trajectories into a shallow-water model. The framework is implemented using the
GPU for the shallow-water simulation and MPI for distribution of, and communi-
cation between, ensemble members. Our experiments show significantly increased
forecast skill for simulations with data assimilation, and we are able to run over
10000 ensemble members on the Nvidia DGX-2 with 16 GPUs. The results indi-
cate, as expected, that data assimilation with 10000 members based on 5 minute
sampling of the observed drifter positions yields a better forecast than 5 minute
sampling with 1000 members.

The results presented herein show that the data assimilation increases the forecast
skill for three of four drifters. The forecast skill for drifter one, however, appears to
be unaffected by the data assimilation, and we believe this is caused by a local pre-
dominant baroclinic ocean dynamic, which is not captured by our current simplified
model. It will be an important future development to see what criteria are significant
for the data assimilation to be most effective, and perhaps include a multi-layer or
reduced-gravity model which can represent such dynamics better.
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The simple perturbation strategy presented in this paper adds a smooth perturba-
tion to the sea-surface level and computes the momentum required to keep the per-
turbation in geostrophic balance. An important extension will be to conduct more
experiments with more sophisticated perturbation methods and stochastic placement
of the ocean eddies, as well as perturbation of the tidal wave phase.
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