• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • Vis innførsel
  •   Hjem
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

ResUNet++: An Advanced Architecture for Medical Image Segmentation

Jha, Debesh; Smedsrud, Pia; Riegler, Michael; Johansen, Dag; de Lange, Thomas; Halvorsen, Pål; Johansen, Håvard D.
Conference object
Accepted version
Thumbnail
Åpne
ResUNet++An_advanced.pdf (1.053Mb)
Permanent lenke
https://hdl.handle.net/10642/8489
Utgivelsesdato
2020-01-16
Metadata
Vis full innførsel
Samlinger
  • TKD - Institutt for informasjonsteknologi [1038]
Originalversjon
Jha D, Smedsrud P, Riegler M, Johansen D, de Lange T, Halvorsen P, Johansen HJ: ResUNet++: An Advanced Architecture for Medical Image Segmentation. In: Ceballos. Proceedings of the 2019 IEEE International Symposium on Multimedia ISM 2019, 2019. IEEE p. 225-230   https://dx.doi.org/10.1109/ISM46123.2019.00049
Sammendrag
Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer. Towards developing a fully automated model for pixel-wise polyp segmentation, we propose ResUNet++, which is an improved ResUNet architecture for colonoscopic image segmentation. Our experimental evaluations show that the suggested architecture produces good segmentation results on publicly available datasets. Furthermore, ResUNet++ significantly outperforms U-Net and ResUNet, two key state-of-the-art deep learning architectures, by achieving high evaluation scores with a dice coefficient of 81.33%, and a mean Intersection over Union (mIoU) of 79.27% for the Kvasir-SEG dataset and a dice coefficient of 79.55%, and a mIoU of 79.62% with CVC-612 dataset.
Utgiver
IEEE
Serie
IEEE International Symposium on Multimedia; 2019 IEEE International Symposium on Multimedia (ISM)

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit