• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • Vis innførsel
  •   Hjem
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perceivability of Map Information for Disaster Situations for People with Low Vision

Tunold, Siv; Radianti, Jaziar; Gjøsæter, Terje; Chen, Weiqin
Conference object
Accepted version
Thumbnail
Åpne
2207.pdf (916.1Kb)
Permanent lenke
https://hdl.handle.net/10642/8393
Utgivelsesdato
2019-07-03
Metadata
Vis full innførsel
Samlinger
  • TKD - Institutt for informasjonsteknologi [1038]
Originalversjon
Tunold S, Radianti J, Gjøsæter T, Chen W. Perceivability of Map Information for Disaster Situations for People with Low Vision. Lecture Notes in Computer Science (LNCS). 2019;11572 LNCS:342-352   https://dx.doi.org/10.1007/978-3-030-23560-4_25
Sammendrag
Digital maps have become increasingly popular in disaster situation to provide overview of information. However, these maps have also created barriers for many people, particularly people with visual impairments. Existing research on accessible maps such as tactile and acoustic maps focuses on providing solutions for blind persons to be able to perceive the information digital maps present. For people with low vision, who often rely on magnifier, good contrast and good navigation support, current digital map solutions present many challenges. In this paper we have studied two types of digital maps and their related surrounding text in the home page of disaster applications. The study focused on perceivability of the information provided by the maps. To investigate this, we have adopted a mix-method approach and performed heuristic testing combined with expert testing by a user with low vision. Based on the evaluation we have made a number of recommendations to improve the perceivability, which can further enhance the accessibility of the maps.
Utgiver
Springer Verlag
Serie
Lecture Notes in Artificial Intelligence;Volume 11572
Tidsskrift
Lecture Notes in Computer Science (LNCS)

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit