• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • Vis innførsel
  •   Hjem
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rigidity theory for C*-dynamical systems and the "Pedersen rigidity problem", II

Kaliszewski, S.; Omland, Tron; Quigg, John
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
koqpedersen-part2.pdf (979.0Kb)
Permanent lenke
https://hdl.handle.net/10642/8260
Utgivelsesdato
2019-04-13
Metadata
Vis full innførsel
Samlinger
  • TKD - Institutt for informasjonsteknologi [1038]
Originalversjon
Kaliszewski SP, Omland T, Quigg JC. Rigidity theory for C*-dynamical systems and the "Pedersen rigidity problem", II. International Journal of Mathematics. 2019;30(8)   https://dx.doi.org/10.1142/S0129167X19500381
Sammendrag
This is a follow-up to a paper with the same title and by the same authors. In that paper, all groups were assumed to be abelian, and we are now aiming to generalize the results to nonabelian groups.

The motivating point is Pedersen’s theorem, which does hold for an arbitrary locally compact group

G

G

, saying that two actions

(A,α)

(A,α)

and

(B,β)

(B,β)

of

G

G

are outer conjugate if and only if the dual coactions

(A

⋊

α

G,

α

ˆ

)

(A⋊αG,α̂)

and

(B

⋊

β

G,

β

ˆ

)

(B⋊βG,β̂)

of

G

G

are conjugate via an isomorphism that maps the image of

A

A

onto the image of

B

B

(inside the multiplier algebras of the respective crossed products).

We do not know of any examples of a pair of non-outer-conjugate actions such that their dual coactions are conjugate, and our interest is therefore exploring the necessity of latter condition involving the images; and we have decided to use the term “Pedersen rigid” for cases where this condition is indeed redundant.

There is also a related problem, concerning the possibility of a so-called equivariant coaction having a unique generalized fixed-point algebra, that we call “fixed-point rigidity”. In particular, if the dual coaction of an action is fixed-point rigid, then the action itself is Pedersen rigid, and no example of non-fixed-point-rigid coaction is known.
Utgiver
World Scientific Publishing
Serie
International Journal of Mathematics;Vol. 30, No. 08
Tidsskrift
International Journal of Mathematics

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit