• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ribbon braided module categories, quantum symmetric pairs and Knizhnik-Zamolodchikov equations

De Commer, Kenny; Neshveyev, Sergey; Tuset, Lars; Yamashita, Makoto
Journal article, Peer reviewed
Submitted version
Thumbnail
View/Open
C%253A%255CUsers%255Clarst.ADA%255CDownloads%255CBKZ.pdf (1.190Mb)
URI
https://hdl.handle.net/10642/7853
Date
2018-11-06
Metadata
Show full item record
Collections
  • TKD - Institutt for informasjonsteknologi [1036]
Original version
De Commer K, Neshveyev S, Tuset L, Yamashita M. Ribbon braided module categories, quantum symmetric pairs and Knizhnik-Zamolodchikov equations. Communications in Mathematical Physics. 2019;367(3):717-769   https://dx.doi.org/10.1007/s00220-019-03317-7
Abstract
Let u be a compact semisimple Lie algebra, and σ be a Lie algebra involution of u. Let Repq(u) be the ribbon braided tensor C∗-category of admissible Uq(u)-representations for 0 < q < 1. We introduce three module C∗-categories over Repq(u) starting from the input data (u,σ). The first construction is based on the theory of 2-cyclotomic KZ-equations. The second construction uses the notion of quantum symmetric pair as developed by G. Letzter. The third construction uses a variation of Drinfeld twisting. In all three cases the module C∗-category is ribbon twist-braided in the sense of A. Brochier—this is essentially due to B. Enriquez in the first case, is proved by S. Kolb in the second case, and is closely related to work of J. Donin, P. Kulish, and A. Mudrov in the third case. We formulate a conjecture concerning equivalence of these ribbon twist-braided module C∗-categories, and confirm it in the rank one case.
Publisher
Springer
Series
Communications in Mathematical Physics;May 2019, Volume 367, Issue 3
Journal
Communications in Mathematical Physics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit