Vis enkel innførsel

dc.contributor.authorAndleeb, Zahra
dc.contributor.authorMalik, Sohail
dc.contributor.authorGhulam, Hussain
dc.contributor.authorKhawaja, Hassan
dc.contributor.authorMoatamedi, Mojtaba
dc.date.accessioned2023-01-25T14:41:38Z
dc.date.available2023-01-25T14:41:38Z
dc.date.created2021-07-20T21:53:32Z
dc.date.issued2021-07-23
dc.identifier.isbn978-0-12-817899-7
dc.identifier.urihttps://hdl.handle.net/11250/3046390
dc.description.abstractThis chapter presents the Multiphysics technique applied in the design optimization of a loading hanger for an aerial crane. In this study, design optimization is applied on the geometric modelling of a part being used in an aerial crane operation. A set of dimensional and loading requirements are provided. Various geometric models are built using SolidWorks® Computer Aided Design (CAD) Package. In addition, Finite Element Method (FEM) is applied to study these geometric models using ANSYS® Multiphysics software. Appropriate material is chosen based on the strength to weight ratio. Efforts are made to optimize the geometry to reduce the weight of the part. Further the chosen carbon fiber reinforced polymers (CFRPs) quasi-isotropic shell structures are analyzed under the influence of dynamic loading. The quasi-isotropic CFRPs shell specimens are fabricated using Multipreg E720 laminates. In this study, the dynamic loading is generated using shock waves in a shock tube experimental setup. The strain and pressure data is collected from the experiments. Additional tests are carried out using Material Test System (MTS) for both tensile and flexural response of CFRPs. Results obtained from experiments are compared with numerical simulations. The numerical simulation and experimental results are found to be in good agreement. Based on the achieved results, conclusions are drawn.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofMultiphysics Simulations in Automotive and Aerospace Applications
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectDesign optimizationen_US
dc.subjectGeometric modelingen_US
dc.subjectFinite element methodsen_US
dc.subjectCarbon fiber reinforced polymersen_US
dc.subjectDynamic loadingen_US
dc.subjectShock wavesen_US
dc.titleDesign optimization and dynamic testing of CFRP for helicopter loading hangeren_US
dc.typeChapteren_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1016/B978-0-12-817899-7.00005-8
dc.identifier.cristin1922279
dc.source.pagenumber187-208en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal