Vis enkel innførsel

dc.contributor.authorShabani, Amirhosein
dc.contributor.authorSkamantzari, Margarita
dc.contributor.authorTapinaki, Sevasti
dc.contributor.authorGeorgopoulos, Andreas
dc.contributor.authorPlevris, Vagelis
dc.contributor.authorKioumarsi, Mahdi
dc.date.accessioned2022-08-02T08:54:17Z
dc.date.available2022-08-02T08:54:17Z
dc.date.created2022-04-22T12:08:15Z
dc.date.issued2022-02-22
dc.identifier.citationProcedia Structural Integrity. 2022, 37 314-320.en_US
dc.identifier.issn2452-3216
dc.identifier.urihttps://hdl.handle.net/11250/3009733
dc.description.abstractStructural vulnerability assessment of heritage structures is a pivotal part of a risk mitigation strategy for preserving these valuable assets for the nations. For this purpose, developing digital twins has gained much attention lately to provide an accurate digital model for performing finite element (FE) analyses. Three-dimensional (3D) geometric documentation is the first step in developing the digital twin, and various equipment and methodologies have been developed to facilitate the procedure. Both aerial and terrestrial close-range photogrammetry can be combined with 3D laser scanning and geodetic methods for the accurate 3D geometric documentation. The data processing procedure in these cases mostly focuses on developing detailed, accurate 3D models that can be used for the FE modeling. The final 3D surface or volumes are produced mainly by combining the 3D point clouds obtained from the laser scanner and the photogrammetric methods. 3D FE models can be developed based on the geometries derived from the 3D models using FE software packages. As an alternative, developed 3D volumes provided in the previous step can be directly imported to some FE software packages. In this study, the challenges and strategies of each step are investigated by providing examples of surveyed heritage structures.en_US
dc.description.sponsorshipThis work is a part of the HYPERION project. HYPERION has received funding from the European Union’s Framework Programme for Research and Innovation (Horizon 2020) under grant agreement No 821054. The contents of this publication are the sole responsibility of OsloMet and NTUA and do not necessarily reflect the opinion of the European Union.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesProcedia Structural Integrity;Volume 37, 2022
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subject3D geometric documentationen_US
dc.subjectCultural heritageen_US
dc.subjectDigital twinsen_US
dc.subject3D laser scannersen_US
dc.subjectPhotogrammetryen_US
dc.subjectFinite element modelsen_US
dc.title3D simulation models for developing digital twins of heritage structures: challenges and strategiesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1016/j.prostr.2022.01.090
dc.identifier.cristin2018382
dc.source.journalProcedia Structural Integrityen_US
dc.source.volume37en_US
dc.source.pagenumber314-320en_US
dc.relation.projectHorisont 2020: EC/H2020/821054en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal