dc.contributor.author | Keprate, Arvind | |
dc.date.accessioned | 2022-03-22T11:58:22Z | |
dc.date.available | 2022-03-22T11:58:22Z | |
dc.date.created | 2022-01-24T17:01:46Z | |
dc.date.issued | 2021-11-01 | |
dc.identifier.issn | 2703-9196 | |
dc.identifier.uri | https://hdl.handle.net/11250/2986788 | |
dc.description.abstract | This paper aims to describe the methodology used to develop, fine-tune and analyze a UNet model for creating masks for two datasets: Polyp Segmentation and Instrument Segmentation, which are part of MedAI challenge. For training and validation, we have used the same methodology on both tasks and finally on the hidden testing dataset the model resulted in an accuracy of 0.9721, dice score of 0.7980 for the instrumentation task, and the accuracy of 0.5646 and a dice score of 0.4100 was achieved for the Polyp Segmentation. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Universitetet i Oslo | en_US |
dc.relation.ispartofseries | Nordic Machine Intelligence (NMI);Vol. 1 No. 1 (2021): MedAI: Transparency in Medical Image Segmentation | |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.subject | UNet | en_US |
dc.subject | Segmentation | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Polyps | en_US |
dc.subject | Instrumentation | en_US |
dc.title | Kvasir-Instruments and Polyp Segmentation Using UNet | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright (c) 2021 Nordic Machine Intelligence | en_US |
cristin.ispublished | true | |
cristin.fulltext | original | |
dc.identifier.doi | https://doi.org/10.5617/nmi.9130 | |
dc.identifier.cristin | 1988896 | |
dc.source.journal | Nordic Machine Intelligence (NMI) | en_US |
dc.source.volume | 1 | en_US |
dc.source.issue | 1 | en_US |
dc.source.pagenumber | 26-28 | en_US |