Vis enkel innførsel

dc.contributor.authorAndleeb, Zahra
dc.contributor.authorMalik, Sohail
dc.contributor.authorKhawaja, Hassan
dc.contributor.authorNordli, Anders Samuelsen
dc.contributor.authorAntonsen, Ståle
dc.contributor.authorHussain, Ghulam
dc.contributor.authorMoatamedi, Mojtaba
dc.date.accessioned2022-03-08T14:12:28Z
dc.date.available2022-03-08T14:12:28Z
dc.date.created2020-12-22T12:24:09Z
dc.date.issued2021-12-28
dc.identifier.citationApplied Sciences. 2021, 11 (1), 1-17.en_US
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/11250/2983831
dc.description.abstractComposite materials are becoming more popular in technological applications due to the significant weight savings and strength these materials offer compared to metallic materials. In many of these practical situations, the structures suffer from drop impact loads. Materials and structures significantly change their behavior when submitted to impact loading conditions as compared to quasi-static loading. The present work is devoted to investigating the thermal process in Carbon-Fiber-Reinforced Polymers (CFRP) subjected to drop test. A novel drop weight impact test experimental method evaluates parameters specific to 3D composite materials during the study. Strain gauge rosette and Infrared thermography are employed to record the kinematic and thermal fields on the composites' surface. This technique is non-destructive and offers an extensive full-field investigation of the material response. The combination of strain and infrared thermography data allows a comprehensive analysis of thermoelastic effects in CFRP when subjected to impacts. Experimental results were validated through numerical analysis by developing a MATLAB® code to analyze whether the coupled heat and wave equation phenomenon exists in a 2-D polar coordinate system by discretizing through a Forward-Time Central-Space (FTCS) Finite Difference Method (FDM). The results show the coupling has no significant impact as the waves generated due to impact disappears in 0.015 s. In contrast, heat diffusion happens for over one second period. This study has demonstrated the heat equation alone governs the CFRP heat flow process, and the thermoelastic effect is negligible for the specific drop weight impact load.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofseriesApplied Sciences;Volume 11 / Issue 1
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectCarbon-fiber reinforced polymersen_US
dc.subjectDrop testsen_US
dc.subjectStrainsen_US
dc.subjectInfrared thermographyen_US
dc.subjectNon-destructive testingen_US
dc.subjectThermoelastic effectsen_US
dc.titleThermoelastic Investigation of Carbon-Fiber Reinforced Composites using Drop Weight Impact Testen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 by the authorsen_US
dc.source.articlenumber207en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.3390/app11010207
dc.identifier.cristin1862764
dc.source.journalApplied Sciencesen_US
dc.source.volume11en_US
dc.source.issue1en_US
dc.source.pagenumber1-17en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal