• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy Efficient Target Coverage in Wireless Sensor Networks Using Adaptive Learning

Rauniyar, Ashish; Kunwar, Jeevan; Haugerud, Hårek; Yazidi, Anis; Engelstad, Paal E.
Journal article, Peer reviewed, Book chapter
Accepted version
Thumbnail
View/Open
Springer_Jeevan_Sensor_Accepted_Version.pdf (979.7Kb)
URI
https://hdl.handle.net/10642/8165
Date
2019
Metadata
Show full item record
Collections
  • TKD - Institutt for informasjonsteknologi [1040]
Original version
Rauniyar A, Kunwar J, Haugerud H, Yazidi A, Engelstad P.E.: Energy Efficient Target Coverage in Wireless Sensor Networks Using Adaptive Learning. In: Jemili, Mosbah. Distributed Computing for Emerging Smart Networks, 2019. Springer Nature p. 133-147   https://dx.doi.org/10.1007/978-3-030-40131-3_9
Abstract
Over the past few years, innovation in the development of Wireless Sensor Networks (WSNs) has evolved rapidly. WSNs are being used in many application fields such as target coverage, battlefield surveillance, home security, health care supervision, and many more. However, power usage in WSNs remains a challenging issue due to the low capacity of batteries and the difficulty of replacing or charging them, especially in harsh environments. Therefore, this has led to the development of various architectures and algorithms to deal with optimizing the energy usage of WSNs. In particular, extending the lifetime of the WSNin the context of target coverage problems by resorting to intelligent scheduling has received a lot of research attention. In this paper, we propose a scheduling technique for WSN based on a novel concept within the theory of Learning Automata (LA) called pursuit LA. Each sensor node in the WSN is equipped with an LA so that it can autonomously select its proper state, i.e., either sleep or active with the aim to coverall targets with the lowest energy cost. Through comprehensive experimental testing, we verify the efficiency of our algorithm and its ability to yield a near-optimal solution. The results are promising, given the low computational footprint of the algorithm.
Publisher
Springer Verlag
Series
Communications in Computer and Information Science;volume 1130

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit