Show simple item record

dc.contributor.authorMatassa, Marco
dc.contributor.authorYuncken, Robert
dc.date.accessioned2019-01-17T13:16:59Z
dc.date.accessioned2019-08-08T08:10:31Z
dc.date.available2019-01-17T13:16:59Z
dc.date.available2019-08-08T08:10:31Z
dc.date.issued2019-03-13
dc.identifier.citationMatassa M, Yuncken. Regularity of twisted spectral triples and pseudodifferential calculi. Journal of Noncommutative Geometry. 2019en
dc.identifier.issn1661-6952
dc.identifier.issn1661-6952
dc.identifier.issn1661-6960
dc.identifier.urihttps://hdl.handle.net/10642/7426
dc.description.abstractWe investigate the regularity condition for twisted spectral triples. This condition is equivalent to the existence of an appropriate pseudodifferential calculus compatible with the spectral triple. A natural approach to obtain such a calculus is to start with a twisted algebra of abstract differential operators, in the spirit of Higson. Under an appropriate algebraic condition on the twisting, we obtain a pseudodifferential calculus which admits an asymptotic expansion, similarly to the untwisted case. We present some examples coming from the theory of quantum groups. Finally we discuss zeta functions and the residue (twisted) traces on differential operators.en
dc.language.isoenen
dc.publisherEuropean Mathematical Societyen
dc.relation.ispartofseriesJournal of Noncommutative Geometry;
dc.rightsPostprint-versjonen kan arkiveres.en
dc.subjectRegularity conditionsen
dc.subjectTwisted spectral triplesen
dc.subjectPseudodifferential calculusen
dc.subjectQuantum groupsen
dc.subjectZeta functionsen
dc.subjectResidue tracesen
dc.titleRegularity of twisted spectral triples and pseudodifferential calculien
dc.typeJournal articleen
dc.typePeer revieweden
dc.date.updated2019-01-17T13:16:59Z
dc.description.versionacceptedVersionen
dc.identifier.cristin1653865
dc.source.journalJournal of Noncommutative Geometry


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record