Vis enkel innførsel

dc.contributor.authorYazidi, Anis
dc.contributor.authorHammer, Hugo Lewi
dc.date.accessioned2019-02-11T06:00:19Z
dc.date.accessioned2019-07-05T07:29:29Z
dc.date.available2019-02-11T06:00:19Z
dc.date.available2019-07-05T07:29:29Z
dc.date.issued2018-05-22
dc.identifier.citationYazidi A, Hammer HL: Quantile Estimation Based on the Principles of the Search on the Line. In: Lazaros. Artificial Intelligence Applications and Innovations, 2018. Springer p. 481-492en
dc.identifier.isbn978-3-319-92007-8
dc.identifier.issn1868-4238
dc.identifier.urihttps://hdl.handle.net/10642/7251
dc.description.abstractThe goal of our research is to estimate the quantiles of a distribution from a large set of samples that arrive sequentially. We propose a novel quantile estimator that requires a finite memory and is simple to implement. Furthermore, the estimator falls under the family of incremental estimators, i.e., it utilizes the previously-computed estimates and only resorts to the last sample for updating these estimates. The estimator estimates the quantile on a set of discrete values. Choosing a low resolution results in fast convergence and low precision of the current estimate after convergence, while a high resolution results in slower convergence, but higher precision. The convergence results are based on the theory of Stochastic Point Location (SPL). The reader should note that the aim of the paper is to demonstrate its salient properties as a novel quantile estimator that uses only finite memory.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesIFIP Advances in Information and Communication Technology;Vol 519
dc.subjectDiscretized estimationen
dc.subjectLearning automataen
dc.subjectStochastic Point Locationen
dc.subjectQuantile estimationen
dc.titleQuantile Estimation Based on the Principles of the Search on the Lineen
dc.typeChapteren
dc.typePeer revieweden
dc.date.updated2019-02-11T06:00:19Z
dc.description.versionacceptedVersionen
dc.identifier.doihttps://dx.doi.org/10.1007/978-3-319-92007-8_41
dc.identifier.cristin1608268
dc.source.isbn978-3-319-92006-1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel