• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hadoop mapreduce scheduling paradigms

Johannessen, Roger; Yazidi, Anis; Feng, Boning
Chapter, Peer reviewed
Accepted version
Thumbnail
View/Open
Hadoop_Scheduling_Survey_Roger_Anis_Boning.pdf (227.1Kb)
URI
https://hdl.handle.net/10642/6436
Date
2017
Metadata
Show full item record
Collections
  • TKD - Institutt for informasjonsteknologi [871]
Original version
Johannessen, Y.A. & Feng, B. (2017). Hadoop mapreduce scheduling paradigms. I J. Zhu, E.B. Lin & T.Li (Red.), 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Red Hook, NY: IEEE, s. 175-179  
Abstract
Apache Hadoop is one of the most prominent and early technologies for handling big data. Different scheduling algorithms within the framework of Apache Hadoop were developed in the last decade. In this paper, we attempt to provide a comprehensive overview over the different paradigms for scheduling in Apache Hadoop. The surveyed approaches fall under different categories, namely, Deadline prioritization, Resource prioritization, Job size prioritization, Hybrid approaches and recent trends for improvements upon default schedulers.
Publisher
Institute of Electrical and Electronics Engineers

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit