Show simple item record

dc.contributor.authorKleppe, Jan Oddvar
dc.date.accessioned2011-02-22T11:48:49Z
dc.date.available2011-02-22T11:48:49Z
dc.date.issued2010-11-09
dc.identifier.citationKleppe, J.O. (2010). Families of low dimensional determinantal schemes. Journal of Pure and Applied Algebra, 215 (7), 1711-1725en_US
dc.identifier.issnPrint: 0022-4049
dc.identifier.issnOnline: 1873-1376
dc.identifier.urihttps://hdl.handle.net/10642/600
dc.description.abstractA scheme X in P^n of codimension c is called standard determinantal if its homogeneous saturated ideal can be generated by the t x t minors of a homogeneous t x (t+c-1) matrix (f_{ij}). Given integers a_0 <= a_1 <= ... <= a_{t+c-2} and b_1 <= ... <= b_t, we denote by W_s(b;a) the stratum of Hilb(P^n) of standard determinantal schemes where f_{ij} are homogeneous polynomials of degrees a_j-b_i and Hilb(P^n) is the Hilbert scheme (if n-c > 0, resp. the postulation Hilbert scheme if n-c = 0). Focusing mainly on zero and one dimensional determinantal schemes we determine the codimension of W_s(b;a) in Hilb(P^n) and we show that Hilb(P^n) is generically smooth along W_s(b;a) under certain conditions. For zero dimensional schemes (only) we find a counterexample to the conjectured value of W_s(b;a) appearing in Kleppe and Miro-Roig [25].en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesJournal of Pure and Applied Algebra;215 (7)
dc.subjectDeterminantalen_US
dc.subjectAlgebraen_US
dc.subjectHilbert schemeen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414en_US
dc.titleFamilies of low dimensional determinantal schemesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionPostprint version of published article. Original available at URL: http://dx.doi.org/10.1016/j.jpaa.2010.10.007en_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.jpaa.2010.10.007


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record