• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Institutt for informasjonsteknologi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incremental Quantiles Estimators for Tracking Multiple Quantiles

Hammer, Hugo Lewi; Yazidi, Anis
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Postprint. Embargo 2018-06-04 (327.1Kb)
URI
https://hdl.handle.net/10642/5311
Date
2017
Metadata
Show full item record
Collections
  • TKD - Institutt for informasjonsteknologi [860]
Original version
Hammer HL, Yazidi A: Incremental Quantiles Estimators for Tracking Multiple Quantiles. In: Benferhat. Advances in Artificial Intelligence: From Theory to Practice, 2017. Springer p. 202-210  
Abstract
In this paper, we investigate the problem of estimating multiple quantiles when samples are received online (data stream). We assume that we are dealing with a dynamical system, i.e. the distribution of the samples from the data stream changes with time. A major challenge arises when simultaneously maintaining multiple quantile estimates using incremental type of estimators. In fact, a naive implementation where multiple incremental quantile estimators are updated in isolation might lead to violation monotone property of quantiles, i.e., an estimate of a lower target quantile might erroneously overpass that of a higher one. Surprisingly, the related work on countering those violations is extremely sparse [1, 3] and almost absent.

Our work tries to fill this literature gap by proposing two solutions to the problem that build on the deterministic update based multiplicative incremental quantile estimator (DUMIQE) recently proposed by Yazidi and Hammer [5], which was shown to be the most efficient incremental quantile estimator in the literature.

Experimental results show that the modified DUMIQE methods perform very well and have a superior performance to the DUMIQE. Moreover, our proposed methods satisfy the monotone property of quantiles. The methods outperform the state of the art multiple incremental quantile estimator of Cao et al. [1, 3].
Publisher
Springer

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit