Show simple item record

dc.contributor.authorKleppe, Jan Oddvar
dc.date.accessioned2017-07-20T20:29:22Z
dc.date.accessioned2017-08-11T08:40:37Z
dc.date.available2017-07-20T20:29:22Z
dc.date.available2017-08-11T08:40:37Z
dc.date.issued2017
dc.identifier.citationKleppe, J.O. (2017). Families of artinian and low dimensional determinantal rings. Journal of Pure and Applied Algebra doi:10.1016/j.jpaa.2017.05.001language
dc.identifier.issn0022-4049
dc.identifier.issn0022-4049
dc.identifier.issn1873-1376
dc.identifier.urihttps://hdl.handle.net/10642/5133
dc.description.abstractLet GradAlg(H) be the scheme parameterizing graded quotients of R = k[x_0,...,x_n] with Hilbert function H (it is a subscheme of the Hilbert scheme of P^n if we restrict to quotients of positive dimension, see definition below). A graded quotient A = R/I of codimension c is called standard determinantal if the ideal I can be generated by the t×t minors of a homogeneous t×(t+c−1) matrix (f_ij). Given integers a_0 ≤ a_1 ≤ ... ≤ a_{t+c−2} and b_1≤...≤b_t, we denote by W_s(b;a)⊂ GradAlg(H) the stratum of determinantal rings where f_ij ∈ R are homogeneous of degree a_j−b_i. In this paper we extend previous results on the dimension and codimension of W_s(b;a) in GradAlg(H) to artinian determinantal rings, and we show that GradAlg(H) is generically smooth along W_s(b;a) under some assumptions. For zero and one dimensional determinantal schemes we generalize earlier results on these questions. As a consequence we get that the general element of a component W of the Hilbert scheme of P^n is glicci provided W contains a standard determinantal scheme satisfying some conditions. We also show how certain ghost terms disappear under deformation while other ghost terms remain and are present in the minimal resolution of a general element of GradAlg(H).language
dc.language.isoenlanguage
dc.publisherElsevierlanguage
dc.relation.ispartofseriesJournal of Pure and Applied Algebra;
dc.relation.urihttp://www.iu.hio.no/~jank/papers/determArtinpostprint1705.pdf
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAlgebralanguage
dc.titleFamilies of artinian and low dimensional determinantal rings.language
dc.typeJournal articlelanguage
dc.typePeer reviewedlanguage
dc.date.updated2017-07-20T20:29:22Z
dc.description.versionacceptedVersionlanguage
dc.identifier.doihttp://doi.org/10.1016/j.jpaa.2017.05.001
dc.identifier.cristin1477107
dc.source.journalJournal of Pure and Applied Algebra


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/