Ideals generated by submaximal minors
Journal article, Peer reviewed
Originally published by the mathematical science publishers (http://mathscipub.org/)

View/ Open
Date
2009Metadata
Show full item recordCollections
Original version
Kleppe, J.O. & Miro-Roig, R.M. (2009). Ideals generated by submaximal minors. Algebra & Number Theory, 3 (4), 367-292 http://pjm.math.berkeley.edu/ant/2009/3-4/p01.xhtmlAbstract
The goal of this paper is to study irreducible families W(b;a) of codimension 4, arithmetically Gorenstein schemes X of P^n defined by the submaximal minors of a t x t matrix A whose entries are homogeneous forms of degree a_j-b_i. Under some numerical assumption on a_j and b_i we prove that the closure of W(b;a) is an irreducible component of Hilb^p(P^n), we show that Hilb^p(P^n) is generically smooth along W(b;a) and we compute the dimension of W(b;a) in terms of a_j and b_i. To achieve these results we first prove that X is determined by a regular section of the twisted conormal sheaf I_Y/I^2_Y(s) where s=deg(det(A)) and Y is a codimension 2, arithmetically Cohen-Macaulay scheme of P^n defined by the maximal minors of the matrix obtained deleting a suitable row of A.