• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Master Theses
  • TKD - Master i Anvendt data- og informasjonsteknologi (ACIT)
  • View Item
  •   Home
  • Fakultet for teknologi, kunst og design (TKD)
  • TKD - Master Theses
  • TKD - Master i Anvendt data- og informasjonsteknologi (ACIT)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring thehHyperparameter space of U-Net using genetic algorithms

Holland, Jon-Olav
Master thesis
Published version
Thumbnail
View/Open
holland-acit2022.pdf (2.250Mb)
URI
https://hdl.handle.net/11250/3017140
Date
2022
Metadata
Show full item record
Collections
  • TKD - Master i Anvendt data- og informasjonsteknologi (ACIT) [243]
Abstract
U-Net based architecture has become the de-facto standard approach for medical image segmentation in recent years. Many researchers have used the original U-Net as a skeleton for suggesting more advanced models such as UNet++ and UNet 3+. For our project, we also seek to optimize the original U-Net. Rather than changing the architecture itself, we optimize hyperparameters which does not affect the architecture, but affects the performance of the model. To optimize the hyperparameters, we use genetic algorithms. After the genetic algorithms have converged, we analyze the results and try to understand why the key factors behind explaining the performance.
Publisher
OsloMet - storbyuniversitetet
Series
ACIT;2022

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit