Numerical analysis of shock wave diffraction
Chapter, Peer reviewed
Accepted version

View/ Open
Date
2019Metadata
Show full item recordCollections
Original version
Chaudhuri, A., Jacobs, G.B. & Hong, X. (2019). Numerical analysis of shock wave diffraction. In: A. Sasoh, T. Aoki & M. Katayama (Eds.), 31st International Symposium on Shock Waves 1Fundamentals (pp1209-1215), New York, NY: Springer Publishing CompanyAbstract
This work reports analysis of complex shockwave diffraction and long-time behavior of shock-vortex dynamics over splitter geometry encountered in both external and internal compressible flows. The simulation resolved the experimental findings of literature and the insight of the flow topology is being presented with the probability density functions (PDFs) of various contributing terms of enstrophy transport equation and the invariants of the velocity gradient tensor. We use an artificial viscosity (AV) based explicit Discontinuous Spectral Element Method (DSEM) based compressible flow solver for this purpose. The numerical scheme utilizes entropy generation based artificial viscosity and thermal conductivity to simulate the conservative form of the governing compressible flow equations. A shock sensor based switch is used to reduce the addition of AV coefficients in rotationdominated regions