Vis enkel innførsel

dc.contributor.authorOng, Huan Ting
dc.contributor.authorRedmond, Sharon L.
dc.contributor.authorMarano, Robert J.
dc.contributor.authorAtlas, Marcus D.
dc.contributor.authorUnge, Magnus Von
dc.contributor.authorAabel, Peder
dc.contributor.authorDilley, Rodney J.
dc.date.accessioned2019-07-11T06:40:45Z
dc.date.available2019-07-11T06:40:45Z
dc.date.issued2017
dc.identifier.citationOng, H. T., Redmond, S. L., Marano, R. J., Atlas, M. D., von Unge, M., Aabel, P., & Dilley, R. J. (2017). Paracrine Activity from Adipose-Derived Stem Cells on In Vitro Wound Healing in Human Tympanic Membrane Keratinocytes. Stem Cells Dev, 26(6), 405-418. doi:10.1089/scd.2016.0204en
dc.identifier.issn1547-3287
dc.identifier.urihttps://hdl.handle.net/10642/7260
dc.description.abstractStem cell therapies for tympanic membrane repair have shown initial experimental success using mesenchymal stem cells in rat models to promote healing; however, the mechanisms providing this benefit are not known. We investigated in vitro the paracrine effects of human adipose-derived stem cells (ADSCs) on wound healing mechanisms for human tympanic membrane-derived keratinocytes (hTM) and immortalized human keratinocytes (HaCaT). ADSC conditioned media (CMADSC) were assessed for paracrine activity on keratinocyte proliferation and migration, with hypoxic conditions for ADSC culture used to generate contrasting effects on cytokine gene expression. Keratinocytes cultured in CMADSC showed a significant increase in cell number compared to serum-free cultures and further significant increases in hypoxic CMADSC. Assessment of ADSC gene expression on a cytokine array showed a range of wound healing cytokines expressed and under stringent hypoxic and serum-free conditions was upregulated (VEGF A, MMP9, Tissue Factor, PAI-1) or downregulated (CXCL5, CCL7, TNF-α). Several of these may contribute to the activity of conditioned media on the keratinocytes with potential applications in TM perforation repair. VEGFA protein was confirmed by immunoassay to be increased in conditioned media. Together with gene regulation associated with hypoxia in ADSCs, this study has provided several strong leads for a stem cell–derived approach to TM wound healing.en
dc.language.isoenen
dc.publisherMary Ann Lieberten
dc.relation.ispartofseriesStem Cells and Development ISSN 1547-3287 e-ISSN 1557-8534 NVI-nivå 1;26(6)
dc.rightsThis is a postprint version of an article. Final publication is available from Mary Ann Liebert, Inc., publishers https://www.liebertpub.com/doi/10.1089/scd.2016.0204en
dc.subjectVDP::Medisinske Fag: 700en
dc.subjectArtikkelen
dc.titleParacrine Activity from Adipose-Derived Stem Cells on in Vitro Wound Healing in Human Tympanic Membrane Keratinocytesen
dc.typeJournal articleen
dc.typePeer revieweden
dc.description.versionacceptedVersionen
dc.identifier.doihttp://dx.doi.org/10.1089/scd.2016.0204
dc.identifier.cristin1490715


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel