Model predictive control of district heating system
Lie-Jensen, Frode; Aannø, Andreas; Aleksandrova, Elena; Westli, Anders; Nielsen, Morten; Komulainen, Tiina M.
Journal article, Journal article, Peer reviewed
Published version
Date
2018-11-19Metadata
Show full item recordCollections
Original version
Lie-Jensen, Aannø, Aleksandrova, Westli, Nielsen M, Komulainen TMK. Model predictive control of district heating system. Linköping Electronic Conference Proceedings. 2018 http://dx.doi.org/10.3384/ecp1815343Abstract
District heating system (DHS) is a widely used and increasingly popular energy source in cities. The uncertainty in the heat load (HL) due to customer demand fluctuations makes unit commitment (UC) and heat production unit (HPU) control a complex task. This case study of the DHS at Fortum Oslo Varme AS (FOV) aims to find a strategy to optimize and fully automate UC and HPU. Our results suggests this can be accomplished by using model predictive control (MPC) to control HPU power and flow rate, mixed integer linear programming (MILP) optimization to solve UC problem, and multiple linear regression (MLR) model to predict the HL. We also show that the fuel cost can be reduced significantly.