Show simple item record

dc.contributor.authorLysebo, Mariusen_US
dc.contributor.authorVeseth, Leifen_US
dc.date.accessioned2015-01-30T12:18:18Z
dc.date.available2015-01-30T12:18:18Z
dc.date.issued2014-12-29en_US
dc.identifier.citationLysebo, M., & Veseth, L. (2014). Quantum optimal control theory applied to transitions in diatomic molecules. Physical Review A, 90(6), 063427.en_US
dc.identifier.issn1050-2947en_US
dc.identifier.otherFRIDAID 1189074en_US
dc.identifier.urihttps://hdl.handle.net/10642/2320
dc.description.abstractQuantum optimal control theory is applied to control electric dipole transitions in a real multilevel system. The specific system studied in the present work is comprised of a multitude of hyperfine levels in the electronic ground state of the OH molecule. Spectroscopic constants are used to obtain accurate energy eigenstates and electric dipole matrix elements. The goal is to calculate the optimal time-dependent electric field that yields a maximum of the transition probability for a specified initial and final state. A further important objective was to study the detailed quantum processes that take place during such a prescribed transition in a multilevel system. Two specific transitions are studied in detail. The computed optimal electric fields as well as the paths taken through the multitude of levels reveal quite interesting quantum phenomena.en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofseriesPhysical Review A;90(6)en_US
dc.subjectQuantum optimal control theoryen_US
dc.subjectMultilevel systemsen_US
dc.subjectQuantum processesen_US
dc.subjectDiatomic moleculesen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431en_US
dc.titleQuantum optimal control theory applied to transitions in diatomic moleculesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevA.90.063427


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record