Altered trunk-pelvis kinematics during load carriage with a compliant versus a rigid system
Peer reviewed, Journal article
Published version
Permanent lenke
https://hdl.handle.net/11250/3186812Utgivelsesdato
2024Metadata
Vis full innførselSamlinger
Sammendrag
Load carriage is a key component of hiking and military activity. The design of the load carriage system (LCS) could influence performance and injury risk. This study aimed to compare a traditional and a compliant LCS during walking and a step-up task to quantify differences in oxygen consumption and trunk-pelvis kinematics. Fourteen participants completed the tasks whilst carrying 16 kg in a rigid and a compliant LCS. There were no differences in oxygen consumption between conditions during either task (p > 0.05). There was significantly greater trunk-pelvis axial rotation (p = 0.041) and lateral flexion (p = 0.001) range of motion when carrying the compliant LCS during walking, and significantly greater trunk-pelvis lateral flexion range of motion during the step-up task (p = 0.003). Carrying 16 kg in a compliant load carriage system results in greater lateral flexion range of motion than a traditional, rigid system, without influencing oxygen uptake.