Vis enkel innførsel

dc.contributor.authorPsarommatis, Foivos
dc.contributor.authorZhou, Baifan
dc.contributor.authorKharlamov, Evgeny
dc.date.accessioned2025-02-13T07:21:42Z
dc.date.available2025-02-13T07:21:42Z
dc.date.created2025-01-31T23:07:49Z
dc.date.issued2024
dc.identifier.issn1877-0509
dc.identifier.urihttps://hdl.handle.net/11250/3177826
dc.description.abstractProduct quality is a vital aspect in the operation of manufacturing systems, manufacturers need to implement at least one quality assurance method to assure the desired quality. The most recent approach for quality assurance is named Zero Defect Manufacturing (ZDM). The scope of the current paper is the implementation of ZDM approach in the automotive industry and specifically for the spot-welding process. Using a machine learning method that is utilizing linear regression and LSTM and consuming data from the production such as sensors and other engineering data to predict the quality of future spot welds. Using this quality prediction there is a root cause analysis to identify why the spot weld will fail and the appropriate prevention actions are proposed. The next step is the training and validation of the machine learning model and the calculation of the accuracy of the model. Once the accuracy of the model is validated a series of simulations, using a dynamic scheduling tool, are performed in order to calculate a series of KPIs to evaluate the impact of the proposed method to the production.en_US
dc.language.isoengen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleImplementation of Zero Defect Manufacturing using quality prediction: a spot welding case study from Boschen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1016/j.procs.2024.01.128
dc.identifier.cristin2354722
dc.source.journalProcedia Computer Scienceen_US
dc.source.volume232en_US
dc.relation.projectEU – Horisont Europa (EC/HEU): 101058384en_US
dc.relation.projectEU – Horisont Europa (EC/HEU): 101138517en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal