A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
Peer reviewed, Journal article
Published version
Date
2024Metadata
Show full item recordCollections
Original version
10.1016/j.cma.2024.117038Abstract
This work proposes a physics-informed deep learning (PIDL)-based constitutive model for investigating the viscoelastic–viscoplastic behavior of short fiber-reinforced nanoparticle-filled epoxies under various ambient conditions. The deep-learning model is trained to enforce thermodynamic principles, leading to a thermodynamically consistent constitutive model. To accomplish this, a long short-term memory network is combined with a feed-forward neural network to predict internal variables required for characterizing the internal dissipation of the nanocomposite materials. In addition, another feed-forward neural network is used to indicate the free-energy function, which enables defining the thermodynamic state of the entire system. The PIDL model is initially developed for the three-dimensional case by generating synthetic data from a classical constitutive model. The model is then trained by extracting the data directly from cyclic loading–unloading experimental tests. Numerical examples show that the PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.