Show simple item record

dc.contributor.authorHitching, George Harry
dc.date.accessioned2024-09-17T13:25:56Z
dc.date.available2024-09-17T13:25:56Z
dc.date.created2024-09-10T14:03:10Z
dc.date.issued2024
dc.identifier.isbn9781470472962
dc.identifier.isbn978147047646-5
dc.identifier.urihttps://hdl.handle.net/11250/3152801
dc.description.abstractGiven a curve C and a linear series on C, the secant locus V e−f e ( ) parametrises effective divisors of degree e which impose at most e − f conditions on . For E → C a vector bundle of rank r, we define etermi nantal subschemes He−f e ( ) ⊆ Hilbe(PE) and Qe−f e (V ) ⊆ Quot0,e(E∗) which generalise V e−f e ( ), giving several examples. We describe the Zariski tangent spaces of Qe−f e (V ), and give examples showing that smoothness of Qe−f e (V ) is not necessarily controlled by injectiveness of a Petri map. We generalise the Abel–Jacobi map and the notion of linear series to the context of Quot schemes. We give some sufficient conditions for nonemptiness of generalised secant loci, and a criterion in the complete case when f = 1 in terms of the Segre invariant s1(E). This leads to a geometric characterisation of semistability similar to that in [Quot schemes, Segre invariants, and inflectional loci of scrolls over curves, Geom. Dedicata 205 (2020), 1–19]. Using these ideas, we also give a partial answer to a question of Lange on very ampleness of OPE(1), and show that for any curve, Qe−1 e (V ) is either empty or of the expected dimension for sufficiently general E and V . When Qe−1 e (V ) has and attains expected dimension zero, we use formulas of Oprea–Pandharipande and Stark to enumerate Qe−1 e (V ). We mention several possible avenues of further investigation.en_US
dc.language.isoengen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.ispartofModuli Spaces and Vector Bundles - New Trends
dc.relation.ispartofseriesContemporary Mathematics;
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSecant loci of scrolls over curvesen_US
dc.typeChapteren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1090/conm/803/16102
dc.identifier.cristin2294676
dc.source.journalContemporary Mathematicsen_US
dc.source.pagenumber279-313en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal