Novel Teixobactin Analogues Show Promising In Vitro Activity on Biofilm Formation by Staphylococcus aureus and Enterococcus faecalis
Peer reviewed, Journal article
Published version
View/ Open
Date
2024Metadata
Show full item recordCollections
Original version
https://doi.org/10.1007/s00284-024-03857-9Abstract
The treatment of infections caused by biofilm-forming organisms is challenging. The newly discovered antibiotic teixobactin shows activity against a wide range of biofilm-forming bacteria. However, the laborious and low-yield chemical synthesis of teixobactin complicates its further development for clinical application. The use of more easily synthesized teixobactin analogues may offer promise in this regard. In this article, three newly developed analogues were tested for efficacy against Staphylococcus aureus and Enterococcus faecalis. Minimum inhibitory and -bactericidal concentrations were investigated. MIC values for S. aureus and E. faecalis ranged from 0.5–2 and 2–4 μg/mL, respectively. Moreover, the ability of the analogues to prevent biofilm formation and to inactivate bacterial cells in already established S. aureus biofilm on medical grade materials (PVC and PTFE) used in the production of infusion tubing and catheters were also tested. The analogues showed an ability to prevent biofilm formation and inactivate bacterial cells in established biofilms at concentrations as low as 1–2 μg/mL. Confocal laser scanning microscopy showed that the most promising analogue (TB3) inactivated S. aureus cells in a preformed biofilm and gave a reduction in biovolume. The relative ease of synthesis of the analogues and their in vitro efficacy, makes them promising candidates for pharmaceutical development.