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ABSTRACT

This report contains the results from the simulations done in STAR-CCM+ to predict pipe losses, including a

validation case with straight smooth/rough pipes, and smooth pipes with 90 degree bends. Results show excellent

validation of predicting the major loss coefficient of smooth/rough pipes with a percentage of error below 0.7.

The results are compared with previous research papers and ultimately led to an equation, making the Reynolds

number a parameter when calculating the minor loss coefficient for pipe bends.
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Project Description

In order to obtain a fully functional, energy effective ventilation system, several factors must be optimized,

ranging from the volume of air needed to the pump requirements. The importance of a satisfactory indoor

climate is a continuous science relevant to research regarding among others efficiency and health in the

workplace. Currently, the balanced ventilation system is a required minimum for most buildings, meaning

that the same amount of air being distributed must be exhausted. This and other requirements like the energy

efficiency claim contribute to the need of systems capable of delivering set requirements at an affordable

consumer price.

Calculating the major and minor losses in a ventilation system are important regarding dimensioning of the

ventilation unit. Here, the energy usage can be optimized if the calculations are correct.

Major losses are due to friction in a straight pipe or duct section, variable by the roughness of the wall and

the velocity of the fluid flow. Depending on the material used for the pipes or ducts, these vary also with

time on account of e.g. corrosion. Minor losses are due to components in the system like bends, valves and

various junctions.

Due to insufficient laboratory data, minor loss coefficients are often referred to in textbooks as constant zeta

values, independent of Reynolds number and diameter. There is therefore now interest for using computa-

tional fluid dynamics to fill the gaps, ultimately leading to making the Reynolds number a parameter when

calculating minor loss coefficients.

Tasks for this work are:

• To make a detailed validation of the CFD models regarding turbulent flow in straight smooth/rough pipes

with a circular cross section and comparing them to classical formulas like the Colebrook and Haaland equa-

tions.

• To simulate flow through a 90◦ bend in smooth pipe to obtain zeta values which are to be compared to

previous research.
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Abstract

The objective of this work is to ultimately shed light on the effects of both Reynolds number and

diameter in ventilation pipes on pressure loss. Numerical simulations are performed using STAR-CCM+,

a commercial CFD software. Classical formulas like the Colebrook and Haaland equations (the Moody

chart), have been the basis for the validation of the chosen numerical models. Friction factors for smooth

and rough pipes with three different roughness parameters are simulated. By comparing the simulated

results with the classical formulas, we have been able to determine the accuracy of the method. An

extensive analysis with varying y+ has been presented to achieve the high accuracy of the CFD prediction.

This has been obtained by realizable κ − ε turbulence model with 1 < y+ < 14. Results show excellent

validation of predicting the major loss coefficient of smooth/rough pipes with a percentage of error below

0.7.

A detailed parametric study is performed to elucidate how the minor loss coefficient depends on the

Reynolds number and the diameter for 90◦ smooth pipe bends. In these cases, the Reynolds stress model

(RSM) as turbulence model performed better. We found that the minor loss coefficient is predominantly

a function of Reynolds number, and it does not vary appreciably with diameters for a fixed Reynolds

number. A curve fitting shows the functional dependency as CRe = 21.6(Re)−0.254 for 90◦ bend in the

range of 10, 000 ≤ Re ≤ 500, 000.

4



Contents

1 Introduction 6

2 Objective 8

3 Theory 9

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Turbulent Flow in Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Turbulent Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Major Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Minor Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.4 Mach number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Governing Equations for Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 RANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 CFD Technique & STAR-CCM+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Pre-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Post-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Method 20

4.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Wall Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Roughness Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Problem Setup 24

5.1 Straight Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 90 Degree Bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Results and Discussion 33

6.1 Straight Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 90 Degree Bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Varying Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.2 Varying Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Conclusions 42

References 43

8 Appendix A. Residuals Straight Pipe 44

9 Appendix B. Residuals 90 Degree Bend 50

5



1 Introduction

“A well functioning ventilation system is not to be heard, not to be seen, shall not gather dust, shall not

distribute pollutions or smells, shall not distribute drafts and shall be energy effective. It should only distribute

comfort” [1].

The ventilation system is considered to be a relatively fresh business, however processing of air has been

preformed for many years, all the way back to the ancient Rome. The mining business were the first to make

use of fans to distribute sufficient air flow in the mines in the early 1800’s. The concentration of CO2 were

determined by Max von Pettenkofer in 1858 to be less than 1000 ppm (parts per million) in schools, which

still is a reference value used today.

In order to maintain satisfactory indoor air quality, an effective ventilation system is required. The system

has to be tailored based on the needs of set building or apartment. This includes not only sufficient amount

of air distributed, but also the quality of the air itself according to current claims. The air outside is often

polluted with a number of health threatening particles like dust or industrial exhaust, meaning the ventilation

unit is in need of a filtering system.

The ventilation system as we know it today, balanced ventilation, were common in residential housing

by the 2000’s. This was a result of the energy efficiency claim that required heat recovery. A balanced

system means that the amount of air distributed to the building or room must be equal to the amount

of air exhausted. Simultaneously there are claims regarding heat recovery in the unit to guarantee energy

efficiency. General claims regarding indoor air quality have been continuously revised, providing the utmost

quality and efficiency delivered by the ventilation systems, and they still are.

In addition to the regular ducts and pipes, there are several components contributing to a balanced ventilation

system, including dampers, fans and filters to name a few, all of which obviously have great impact on the

characteristics of the fluid flow from the air intake to the air exhaust. One might think that these components

are the main reasons for e.g. pressure loss. However, the ducts themselves have a huge impact as well

regarding wall roughness and when facing bends or T-junctions. Figure 1 is an illustration of an industrial

ventilation system with bends and components typically occurring.

Figure 1: Visualization of ventilation system [2]
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Major losses are associated with frictional energy loss per length of pipe, depending on the flow velocity,

pipe length, pipe diameter and a friction factor based on the roughness of the pipe, and whether the flow

is laminar or turbulent. Pressure loss due to various bends and junctions throughout the duct network are

called minor losses. In order to calculate pressure loss due to these losses, experimental and empirical studies

have granted constant minor loss coefficients, or zeta values.

Figure 2: Zeta Values [3]

As shown in figure 2, where zeta values are referred to as KL values, the values are completely independent of

diameter and provided by the manufacturers. However, for the last 30 years we have known that traditional

“minor loss coefficients” are actually highly dependent on both the diameter and the Reynolds number.

Recent studies, such as the European Report [4] ran simulations using varying Reynolds numbers, concluding

they indeed have an effect on pressure loss. However in the summary of the report, all information concerning

Reynolds number variation was excluded. The work in this thesis will contribute to the missing data,

regardless of the results, to create awareness on the importance of Reynolds number in pressure loss. The

article mentioned above discussed in total six different components, one of which are of interest in this

report, a smooth 90◦ bend. Other research works reported by Salehi and Gutovic [5] [6] also explored the

effects of Reynolds number in pressure loss. By comparing previous data, generated from different users,

using different models and having various ranges in geometry, their findings include interesting predictions

in which we may compare with our findings in this work.
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2 Objective

Due to insufficient laboratory measurement data, we are not able to make correlations with Reynolds number

as a parameter for minor loss coefficient. As a result of the missing data, textbooks tabulate constant zeta

values as correction factors for various duct components. Even textbooks warn against using the stated zeta

values, as they may differ considerably based on manufacturers data and strongly recommend using their

values [3].

In order to help understand the effect of varying Reynolds number and diameter in duct components regarding

pressure loss, the interest in using computational fluid dynamics (from now on referred to as CFD) is now

present. By using experimental data and classical formulas like the Haaland and Colebrook equations and the

Moody chart, we aim to validate our cases to insure the accuracy using a CFD software tool. Computational

fluid dynamics allows us to compute complex fluid flow behavior using numerical algorithms.

The objectives for the present thesis are:

1. To make a detailed validation of the CFD models regarding turbulent and rough fluid flow by analyzing

friction factor of a straight pipe with a circular cross section. We aim to keep the validation case within

a range of Reynolds numbers 5 · 104 ≤ Re ≤ 5 · 105 and roughness 0 ≤ ε/D ≤ 0.0009.

2. When obtaining satisfactory results, we aim to simulate flow in the infamous 90◦ smooth bend, to once

and for all confirm the effects of Reynolds number and diameter on pressure loss in ventilation ducts.

This will lay the groundwork for the Reynolds number being implemented as a parameter for future

minor loss calculations in ventilation systems.
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3 Theory

3.1 Background

It’s been known for more than 30 years that the Reynolds number affects the pressure loss a great deal,

but for now the minor loss coefficients are determined by constant “zeta” values, and without the Reynolds

number as an actual parameter. This work is ultimately meant to focus this problem. To be able to fill the

current gaps regarding determining pressure loss factors correctly we have to first understand the physics

behind internal fluid flow in pipes and ducts.

Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications and fluid

distribution networks. In the present study, mainly, we will be dealing with the distribution of air in a

ventilation system. Friction, based on major and minor losses, is used to determine the pumping power

requirement and naturally we want to be able to determine which capacity our system needs with cost and

energy efficiency. In order to do this properly, the pressure loss throughout the system needs to be calculated.

Theoretical analysis and experimental results are often used when solving these problems, making the final

results within 90% or less in accuracy. We believe that by correlating the Reynolds number as a direct

parameter to the pressure loss calculations, we could help fill that current gap and contribute to more

efficient systems.

Osborne Reynolds discovered laminar and turbulent flow in pipes and ducts over a century ago [3], which

evidently led to Reynolds number. The number is acquired by dividing inertial forces by viscous forces,

Re =
UavgL

ν
=
ρUavgL

µ
=
Inertialforces

V iscousforces
(1)

where Uavg is the average flow velocity [m/s], L is the characteristic length of the geometry [m], ν = µ
ρ is

the kinematic viscosity [m2/s] and µ is the dynamic viscosity [kg/ms].
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Figure 3: Flow regimes of a candle smoke plume [3]

We will primarily be dealing with pipe problems, which gives us a Reynolds number greater than 4000 as

turbulent flow. The characteristics of turbulent flow can be shown by e.g. figure 3, where smoke is rising

from a lit candle. At some point the smoke plume starts fluctuating and seems to be chaotic.

For internal flow in pipes the characteristic length L is the hydraulic diameter D. This is defined by:

D =
4Ac
p

(2)

where Ac is the cross-sectional area of the pipe and p is its wetted perimeter.

Figure 4 shows the D’s for pipes and ducts with various cross sections.
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Figure 4: Hydraulic diameter for various geometries [3]

3.2 Turbulent Flow in Pipes

In this thesis the work will exclusively consider turbulent flow, as most flows encountered in engineering

practice today are. Turbulent flow is a complex mechanism dominated by flow fluctuations and it is important

to understand how this affects the wall shear stress. Our understanding of turbulent flows are far from

resolved, in spite of tremendous work done in this area. One must rely on previously obtained data from

experimental and empirical studies when validating any ongoing work.

For internal flow in pipes the Reynolds number must be of a certain value to be considered turbulent. Under

most practical conditions. the flow in a circular pipe is laminar for Re ≤ 2300, fully turbulent for Re ≥ 4000

and transitional in between.

Turbulent flows are defined by fluctuations, or so-called eddies, generating large energy, momentum, heat

and mass transfer. As a result, turbulent flows are associated with much higher values of friction, heat

transfer and mass transfer coefficients. The chaotic fluctuations of fluid particles play a dominating role in

transport of mass, momentum and energy.
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Figure 5: Eddies in Turbulent Flow [7]

The eddies (see figure 5) vary strongly in size and therefore also in energy, heat and mass transfer. The

largest turbulent eddies interact with and extract energy from the mean flow by a process called vortex

stretching. This is in CFD usage defined as a length parameter, called the turbulent length scale. The

presence of mean velocity gradients in sheared flows distorts the rotational turbulent eddies. Suitably aligned

eddies are stretched because one end is forced to move faster than the other [8].

3.2.1 Turbulent Velocity Profile

The velocity profile for laminar flow is typically parabolic when fully developed, and defined as:

u(r) = umax

[
1−

( r
R

)2
]

(3)

where R is the pipe radius, r is a variable distance from the center of the pipe and umax is the maximum

velocity inside of the pipe. The profile is much fuller with turbulent flow, with a sharp drop near the pipe

wall. Figure 6 (top) shows the parabolic profile for laminar flow.
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Figure 6: Velocity Profile [3]

Turbulent flow along a wall consists of four regions, characterized by the distance from the wall. The

thickness of the viscous sublayer is typically much less than 1 percent of the of the pipe diameter, but this

thin layer plays a dominant role on flow characteristics because of the large velocity gradients it involves.

The eddy motion near the wall is dampened, and the flow in this layer is essentially laminar. The shear

stress consists of laminar shear stress and is proportional to the fluid viscosity. Experiments confirm that

the velocity profile in the viscous sublayer is nearly linear. The wall shear stress can then be expressed as

τw = µ

(
∂u

∂y

)
y=0

(4)

τw = µ

(
u

y

)
= ρν

(
u

y

)
(5)

τw
ρ

=
νu

y
. (6)

where µ is the dynamic viscosity, u is the flow velocity parallel to the wall and y is the distance from the

wall. The shear stress is a force whom is causing drag to the fluid flow.
τw
ρ

is frequently encountered when

dealing with a turbulent flow. The friction velocity uτ is defined as the square root of this relation so that
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uτ =

√
τw
ρ

. The velocity profile in the viscous sublayer is expressed in dimensionless form as:
u

uτ
=
uτy

ν
.

and is known as the law of the wall.
uτy

ν
is commonly referred to as a non-dimensional distance y+, where

y is the distance to the first wall-cell node and ν is the local kinematic viscosity [9].

Similarly,
u

uτ
represents a non-dimensional velocity and expressed as u+. The law in the viscous sublayer

then boils down to the following equation u+ = y+. In the overlap layer, also called the logarithmic layer,

dimensional analysis confirms that velocity is proportional to the logarithm of distance. The velocity profile

is then expressed as
Uavg
uτ

=
1

κ

(uτy
ν

)
+B (7)

where κ is the von Karman constant, a fundamental constant in fluid mechanics and typically 0.414 and B

is an integration constant. This relation is known as the logarithmic law.

Figure 6 (bottom) shows the general features of the turbulent velocity profile.

3.2.2 Major Losses

Major losses arises due to friction in the pipe or duct system. It’s natural to start with the basics, hence the

Darcy-Wiesbach friction factor:

f =
8τw
ρU2

avg

(8)

where τw is given by equation 5.

The friction factor given in equation 9 is needed when calculating the pressure loss:

∆PL = f
L

D

ρU2
avg

2
(9)

where L is the length of the pipe, D is the hydraulic diameter and
ρU2

avg

2 is the dynamic pressure.

The friction factor in fully developed turbulent flow depends on the Reynolds number and the relative

roughness, ε/D. Relative roughness is the ratio of the mean height of roughness of the pipe to the pipe

diameter. Colebrook used data, mainly provided by Prandtl’s student, Nikuradse in 1933, to combine data

for transition and turbulent flow in smooth as well as rough pipes into the implicit relation we know as the

Colebrook equation:
1√
f

= −2.0 · log

( ε
D

3.7
+

2.51

Re
√
f

)
(10)

The Colebrook equation is implicit in f and thus the determination of the friction factor requires iteration.

An approximate explicit relation for f was given by Haaland in 1983:

1√
f

= −1.8 · log

(
6.9

Re
+

( ε
D

3.7

)1.11
)

(11)

The results given from this equation are within 2 percent of those obtained from the Colebrook equation.

The Moody chart shows that at very large Reynolds numbers, > 104, the friction factors are independent of

14



the Reynolds number. The Colebrook equation then reduces to the von Kármán equation:

1√
f

= −2.0 · log

( ε
D

3.7

)
(12)

As a result of the Colebrook equations, the Moody chart was created in order to simply see the correlation

between Reynolds number and friction factor with set roughness ε/D as seen in figure 7.

Figure 7: Moody Chart [3]

3.2.3 Minor Losses

When the fluid flow is forced in a new direction via e.g. various bends, junctions, expansions and contractions

or valves, the fluid flow characteristics are altered and an additional friction factor is to be applied. These

factors depend on the geometry of the component, as well as smoothness of the turn or inlet. Minor losses

are usually expressed in terms of the loss coefficient zeta, ζ, defined as;

ζ =
hL

U2
avg/(2g)

(13)

15



where hL is the additional irreversible head loss in the piping system caused by insertion of the component,

defined as hL = ∆PL

ρg . While the majority of the irreversible head loss occurs near a component, some of

it occurs downstream of the component due to induced swirling turbulent eddies that are produced in the

component and continue downstream. It may be natural to think that minor losses occur locally near the

minor loss component, but these eddies will have an effect on the flow for several diameters downstream

of the component. “The loss coefficient, in general, depends on the geometry of the component and the

Reynolds number. However it is usually assumed to be independent of the Reynolds number” [3]. Cengel

claims that with a large Reynolds number, like most flows have in practice, the loss coefficients including

the friction factor, tend to be independent of the Reynolds number. As a result of this assumption, the

infamous zeta values are referenced, providing correction factors for various components, irregardless of the

Reynolds number as long as the flow is turbulent. Under most practical conditions for internal flow in

a circular pipe, the generally accepted value for turbulence is Re > 4, 000. However, the textbook clearly

states that these values vary, highly dependent on the manufacturer of the component, and recommend using

the manufacturers values if provided. After countless searches online, not a single manufacturer provides

information about a pressure loss correction factor for a 90 degree bend, meaning in most cases we are forced

to rely on given zeta values.

3.2.4 Mach number

The level of variation of density in gas flows and the consequent level of approximation made when modeling

gas flows as incompressible depends on the Mach number. For atmospheric air, a pressure change of just

0.01 atm causes a change of 1 percent in the density, while liquids are usually referred to as incompressible

substances. In order to consider a gas as incompressible, the density change must remain below 5 percent,

requiring a Mach number < 0.3. The Mach number is defined by Ma =
Uavg

c , where Uavg is the average

velocity and c equals the speed of sound in the specific fluid. To find the speed of sound accurate to the

fluid, in our case an ideal gas, one can rely on the equation
√
γ ·RT . γ is the specific heat ratio of the fluid

and R is the specific gas constant. Most of the cases in this work are made by taking air as the working

fluid. Incompressible flows are thus considered for all cases. This is ensured by keeping the Mach number

< 0.3.

3.3 Governing Equations for Fluid Flow

Fluid flows can be defined mathematically using the continuity equation and the momentum equation.

Conservation of Mass

The balance of mass is expressed by the continuity equation:

∂ρ

∂t
+
−→
∇ · (ρ−→v ) = 0 (14)

where ρ is the density, that is, the mass per unit volume and v is the continuum velocity.

Conservation of Linear Momentum

16



The time rate of change of linear momentum is equal to the resultant force acting on the continuum:

∂(ρv)

∂t
+
−→
∇ · (ρ−→v ⊗−→v ) = −

−→
∇ · (pI) +

−→
∇ · τ + fb (15)

where ⊗, the outer product denotes the Kronecker product or Identity matrix, I. fb is the resultant of

the body forces, such as gravity and centrifugal forces, per unit volume acting on the continuum, p is the

pressure and τ is the viscous stress tensor.

Conservation of Energy:

When the first law of thermodynamics is applied to the control volume, the conservation of energy can be

written as:
∂(ρE)

∂t
+
−→
∇ · (ρE−→v ) = fb · −→v +

−→
∇ · (−→v · τ)−

−→
∇ · q + SE (16)

where E is the total energy per unit mass, q is the heat flux and SE is an energy source per unit volume [10].

Equations 9, 10 and 12 can be expressed in a general transport equation:

∂ρφ

∂t︸︷︷︸
Transient term

+ ∇ · (ρ~uφ)︸ ︷︷ ︸
Convection term

= ∇ · (Γ∇φ)︸ ︷︷ ︸
Diffusion term

+ Sφ︸︷︷︸
Source term

(17)

where Γ is the diffusion coefficient or diffusivity. The transient term, ∂ρφ
∂t , accounts for the accumulation

of φ in the concerned control volume The advective term, ∇ · (ρ~uφ), accounts for the transport of φ due

to the existence of the velocity field (note the velocity −→u multiplying φ) The diffusion term, ∇ · (Γ∇φ),

accounts for the transport of φ due to its gradients. The source term, Sφ , accounts for any sources or

sinks that either create or destroy φ . Any extra terms that cannot be cast into the convection or diffusion

terms are considered as source terms. CFD techniques can be used to solve these equations. The objective

of all discretization techniques (Finite Difference, Finite Element, Finite Volume, Boundary Element etc.)

is to devise a mathematical formulation to transform each of these terms into an algebraic equation. Once

applied to all control volumes in a given computational domain, we obtain a full linear system of equations

that needs to be solved [11].

3.3.1 RANS

Most users of CFD find it adequate using time-averaged properties of the flow, e.g. mean velocities, mean

pressures and mean stresses. The computations of turbulent flow are therefore mostly being simulated using

Reynold-average-Navier-Stokes equations, defined as; Continuity

∂ρ̄

∂t
+∇ · (ρ̄Ũ) = 0 (18)
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RANS equations

∂(ρ̄)Ũ

∂t
+∇ · (ρ̄ŨŨ) = −∂P̄

∂x
+∇ · (µ∇Ũ) +

[
−∂(ρ̄u′2)

∂x
− ∂(ρ̄u′v′)

∂y
− ∂(ρ̄u′w′)

∂z

]
+ SMx

∂(ρ̄)Ṽ

∂t
+∇ · (ρ̄Ṽ Ũ) = −∂P̄

∂y
+∇ · (µ∇Ṽ ) +

[
−∂(ρ̄u′v′)

∂x
− ∂(ρ̄v′2)

∂y
− ∂(ρ̄v′w′)

∂z

]
+ SMy

∂(ρ̄)W̃

∂t
+∇ · (ρ̄W̃ Ũ) = −∂P̄

∂z
+∇ · (µ∇W̃ ) +

[
−∂(ρ̄u′w′)

∂x
− ∂(ρ̄v′w′)

∂y
− ∂(ρ̄w′2)

∂z

]
+ SMz
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Scalar transport equation

∂(ρ̄Φ̃)

∂t
+∇ · (ρ̄Φ̃Ũ = ∇ · (ΓΦ∇Φ̃) +

[
−∂(ρ̄u′ϕ′)

∂x
− ∂(ρ̄v′ϕ′)

∂y
− ∂(ρ̄w′ϕ′)

∂z

]
+ SΦ (20)

where the overbar indicates a time-averaged variable and the tilde indicates a density-weighted or Favre-

average variable.

In order to compute turbulent flow using the RANS equations, turbulence models are to be developed. The

number of unknowns in the equations above exceeds the number of equations, meaning additional transport

equations are to be added depending on the model used.

In this study, the κ−ε model, the κ−ω model and the RSM model are mostly used. The realizable κ−ε model

contains a new transport equation for the turbulent dissipation rate ε. A critical coefficient of the model

Cµ is expressed as a function of mean flow and turbulence properties, rather than assumed to be constant

as in the standard model. This procedure lets the model satisfy certain mathematical constraints on the

normal stresses consistent with the physics of turbulence. The concept of a variable Cµ is also consistent

with experimental observations in boundary layers. This model is substantially better than the standard

κ − ε model for many applications, and can generally be relied upon to give answers that are at least as

accurate. The two-layer realizable κ − ε model will be used in this thesis, granting the added flexibility of

an all-y+ wall treatment.

From the standard κ− ε model the ε transport equation was transformed into the κ−ω model by adding an

additional non-conservative cross-diffusion term containing the dot product ∆k ·∆ω. By further modifying

the linear constitutive equation, the SST (shear-stress transport) κ−ω model arises. The SST model has seen

fairly wide application in the aerospace industry, where viscous flows are typically resolved, and turbulence

models are applied throughout the boundary layer.

The Reynolds Stress Transport Model, from now on referred to as RSM, have the potential to predict complex

flows because the transport equations for the Reynolds stresses naturally account for the effects of turbulence

anisotropy, streamline curves, swirl rotation and high strain rates. RSM is more computationally expensive,

mainly because the model solves the actual stresses and all the components of the turbulent transport in

contrast to eddy-viscosity two-equation models such as κ − ε and κ − ω who solves the stresses as a mean

rate plus a fluctuating component.
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3.4 CFD Technique & STAR-CCM+

Computational fluid dynamics is the analysis of systems involving fluid flow, heat transfer and associated

phenomena such as chemical reactions by means of computer-based simulation [8]. Increasingly CFD is

becoming a vital component in the design of industrial products and processes. CFD codes are structured

around the numerical algorithms that can tackle fluid flow problems. In order to provide easy access to

their solving power all commercial CFD packages include sophisticated user interfaces to input problem

parameters and to examine the results, including the main elements following in the next three sections.

3.4.1 Pre-processor

When simulating a CFD problem, certain input values must be defined. These inputs include definition of

the geometry, called the computational domain, grid generation dividing the domain into control volumes

or mesh, selection of the physical and chemical phenomena that need to be modeled, definition of fluid

properties and specification of appropriate boundary conditions.

The accuracy of a CFD solution is governed by the number of cells in the mesh grid. Optimal meshes are

often non-uniform, finer in areas where large variations occur from point to point and coarser in regions with

relatively little change. Over 50% of the time spent in industry on a CFD project is devoted to the definition

of the domain geometry and grid generation. Up-to-date pre-processors give the user access to libraries of

material properties for common fluids and a facility to invoke special physics and chemical process models.

3.4.2 Solver

In most well-established CFD codes the finite volume method is central. The numerical algorithm consists of

integration of the governing equations of fluid over all the finite control volumes of the domain, discretization

meaning conversion of the resulting integral equations into a system of algebraic equations and solution of

the algebraic equations by an iterative method.

3.4.3 Post-processor

When presenting results given by the solver step, most CFD packages are equipped with versatile data

visualization tools. These include, but are not limited to, vector and scalar plots, geometry and grid display,

surface plots in both 2D and 3D and particle tracking. This opens the door for communicating ideas and

results to the non-specialist e.g. investors.

STAR-CCM+ is a comprehensive simulation tool which offers modulation of a range of physics phenomena

including fluid mechanics. In order to solve multiple equations in some cases thousands of times during a

simulation run, STAR-CCM+ have requirements for the computer system.
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Figure 8: System Requirements for using STAR-CCM+ [12]

There has been a combination of computers being used when running simulations. Some of them have been

done on computers provided by the campus, which meets the set requirements with ease, and some of them

on one of our personal computers. This computer has an Intel i3 7100U CPU with duo 2.40 GHz cores

processor with a total memory of 6 GB. It has been able to run all simulations, but the clock time has

varied depending on the scale of the geometry. Run times are presented in relevant cases. The mathematical

models that describe the physics of continua are derived from fundamental laws that express conservation

principles. In terms of conservation laws, this thesis will present results using a Eulerian approach, where

the given volume represents a portion of space where material can flow through [10].

4 Method

4.1 Geometry

In order to design our geometry in STAR-CCM+ within the validation thesis, a CAD model was implemented.

The CAD tool includes a sketching function, where a circle with a certain diameter was drawn to match the

Reynolds number, and extruded twenty times the diameter to properly illustrate a fully developed flow (see

figure 9).

Figure 9: Making sketches in Star CCM+ [10]
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4.2 Mesh

When generating mesh it is important to define the position in or on the geometry where it is expected

to have the greatest change in e.g. pressure, energy or velocity, depending on the case. This is important

regarding the capacity of the working computer as a very high cell count demands massive computer power,

which can ultimately result in a running time of hours or even days. When pinpointing the position of

interest, one can use a finer mesh at that point and a coarser mesh on the remaining computational domain.

4.3 Boundaries

When selecting boundary conditions in Star CCM+, it is necessary to make parts from the original geometry.

For example a straight pipe has normally an inlet, an outlet and wall boundary conditions. When simulating

pressure loss through a pipe, we use a velocity inlet at the pipe inlet and pressure outlet condition at the

pipe outlet. The remaining pipe in between are defined as a no slip wall, making it possible to alter the wall

characteristics.

4.4 Wall Treatment

To resolve the near wall flow accurately, mesh modeling uses a tool called prism layer mesh. Prism layers are

required in modeling turbulence because of the forces from the wall acting on a fluid causes effects of drag

and pressure drop. By increasing the number of nodes near the wall and in general, the realization of the

cross-stream provides enhanced stream-wise resolution. When the walls are smooth, the shear stress at the

surface is transmitted to the flow via the viscous sublayer and needs to be accurately modeled to resolve the

velocity and temperature gradients normal to the wall. Using a prism layer mesh allows you to resolve the

viscous sublayer directly if the turbulence model supports it. This is where the y+ becomes considerable.

y+ is often used to describe how coarse or fine a mesh is for a particular flow pattern.

To get the correct validation for our thesis, y+ is important in order to obtain the right friction factor related

to the Moody chart. The y+ value was adjusted by altering the thickness of the wall-adjacent cell node.

Different y+ approaches of STAR-CCM+ is illustrated in figure 10.
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Figure 10: y+ approach [10]

Initially, our goal was to keep y+ < 5 when dealing with a pipe where the walls are smooth to ensure that

the viscous sublayer gets properly resolved. However, three of four y+ values were above 5, to attain the

correct results. When dealing with wall roughness, y+ is recommended in the range 25 to 30. Then, the

first wall centroid falls within the buffer region of the boundary layer. A blending function is then used to

calculate turbulence quantities such as dissipation, production, and stress tensor. However, that wasn’t the

approach that gave us the results we wanted. We learned that the Reynolds number also plays an important

role in determining which y+ is acceptable for each case. To obtain the right friction factor, we noticed an

increasing value of the Reynolds number led to a higher value of y+, with some exceptions.

4.5 Roughness Modeling

Roughness in pipes can result in disturbance to the velocity field and significantly change the flow behavior.

Its physical appearance can be viewed as small obstacles at the wall boundary of any given component.
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Figure 11: Roughness [13]

Figure 11 shows the roughness effects in the viscous sublayer for a smooth and a rough wall.

To account for the effects of pipe roughness in a turbulent flow, some correction factors are generally used

to properly illustrate how the roughness is affecting the fluid flow. The sand-grain roughness is a length

parameter and usually expressed as ε. It is typically quite small (0-0.1m). In deciding upon a wall treatment

for a situation where the pipe is rough, the non-dimensional sand-grain roughness, also called the roughness

Reynolds number, R+, has to be considered. R+ represents the fluid properties of a viscous flow. The

definition of R+ is:

R+ =
εuτ
ν

(21)

When dealing with roughness, y+ is recommended to exist in the range of 25-30. Here, the logarithmic law

for a rough surface yields:
Uavg
uτ

=
1

κ

(uτy
ν

)
+B −∆B(R+) (22)

where ∆B is a function of R+, the roughness function. ∆B exists in three different regions. The smooth

region where R+ < 2.25, the transitional 2.25 < R+ < 90, and the fully rough regime where R+ > 90 [14].

In most of our CFD simulations, R+ was found to be in the transitional regime. When we are in the

fully rough regime the sublayer gets irrelevant, and the logarithmic profile can stop intersecting with the

assumed linear profile in the sublayer. If these curves do not intersect in the transitional roughness regime

R+
smooth > R+ > R+

rough, STAR-CCM+ uses the logarithmic profile with requirements that u+ never falls

below zero. When this condition is violated, STAR-CCM+ limits the roughness height locally such that

R+ = y+ when y+ becomes less than R+. [10].

23



5 Problem Setup

When initially running the STAR-CCM+ software we found it helpful to start with the basics using tutori-

als. STAR-CCM+ offers an extensive database, including a user guide, theory and tutorials, being greatly

appreciated in our learning process. In order to implement a CAD model, a sketch was to be made. A circle

was created in the internal sketching tool matching the geometry of interest, to begin with a straight pipe.

After designing appropriate parts to our body, inlet, outlet and wall, we assigned boundaries to the parts,

velocity inlet and pressure outlet. We chose what appeared to be satisfactory surface and volume mesh, using

trimmer mesh, surface re-mesher and prism layer mesh functions. We defined the physics of the fluid as

incompressible air and left the wall roughness as smooth. We chose the κ− ε solver and started running our

first case with a maximum number of iterations at 1000. In order to calculate the Darcy–Weisbach friction

factor, a field function was created in STAR-CCM+ attaining the equation Cf =
8τwall
ρv2

. When comparing

the results of pressure loss through our geometry with the Haaland and Colebrook equations and also the

Moody chart, the results were not satisfactory. We started from scratch, redefining our mesh, adjusting the

y+ value, the prism layer count, thickness and stretching, made sure our cell count was not too high and

kept an eye on the Mach number, making sure it was < 0.3. After several runs, residuals show converging

behavior and the results were found to be comparable with the classical formulas.

5.1 Straight Pipe

In order to validate the final results given by Star CCM+, cases using a straight pipe as a geometry was

simulated and run with different Reynolds numbers and wall roughnesses. In order to alter the Reynolds

number, changes were made in the geometry, increasing both diameter and length of the pipe when aiming

for increased Reynolds number. The simulations were run with incompressible air as fluid in a smooth pipe

with circular cross section.

The range of these values were chosen to also compare with the experiments presented in the European

Report [4]. The length of the pipes were determined by multiplying the diameter at work with 20. In

addition, three levels of relative roughness were run to compare with the Haaland and Colebrook equations

(the Moody chart), presented under the Results section. Using a simple geometry of a straight pipe,
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Figure 12: Geometry of a straight pipe, STAR-CCM+

when running simulations, physics and boundary condition selections are similar for all the different Reynolds

numbers. The mesh selections and other properties that vary are shown in separate tables for each case.

Figure 12 shows the CAD geometry for the straight pipe case.

Parameter Menu Properties Selection/Value inputted

Physics Selection

Time Steady
Material Gas
Flow Segregated Flow
Equation of State Constant Density
Viscous Regime Turbulent
RANS K-Epsilon

Boundary Condition Selection

Inlet Inlet Velocity
Outlet Outlet Pressure
Wall Wall
Turbulent Intensity 10%
Turbulence Specification Intensity + Length Scale
Turbulent Length Scale 3.8% of Hydraulic Diameter
Turbulent Velocity Scale 10% of Inlet Velocity
Temperature 300K
Wall Condition No Slip

Table 1: Properties used for all cases

Table 1 describes the input data for all following cases including the roughness model used, material selection

and boundary conditions
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Properties Re 50,000 Re 100,000 Re 200,000 Re 500,000
Mesh Type TSP TSP TSP TSP

Base Size 20 mm 20 mm 15 mm 20 mm
Prism Layer Thickness 39% 40% 25% 50%

Number of Layers 6 6 4 6
Prism Layer Stretching 2.0 1.5 1.5 2.0

Cell Count 24,648 107,414 42,000 43,120
Y + 1.9 5.3 13.2 8.3

Mach 0.029 0.029 0.058 0.115

Table 2: Properties used for Case 1, smooth pipe. TSP represents using the trimmer mesh, the surface
re-mesher and prism layer mesher.

Table 2 shows the properties used for the smooth pipe. The cell count for Re = 105 is larger compared to

the other cases because of the fine mesh close to the walls as seen in figure 13.

Figure 13: Mesh in a plane section used for Re 100,000 with no roughness

Tables 3, 4 and 5 show the properties used for the rough pipe cases. In all cases the y+ was accounted for,

and modified to obtain a satisfactory value for the friction factor. The base size of the cells are kept at 10

or 20 mm for all cases.

Properties Re 50,000 Re 100,000 Re 200,000 Re 500,000
Mesh Type TSP TSP TSP TSP

Base Size 10 mm 20 mm 20 mm 20 mm
Prism Layer Thickness 42% 40% 44.5% 50%

Number of Layers 4 4 6 4
Prism Layer Stretching 1.0 1.0 1.1 1.0

Cell Count 80,960 80,328 108,899 33,712
y+ 17.0 30.2 32.9 131.3

Mach 0.029 0.029 0.058 0.115
R+ 0.3 0.5 0.9 2.1

Table 3: Properties used for Case 2, ε/D = 0.0001.
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Properties Re 50,000 Re 100,000 Re 200,000 Re 500,000
Mesh Type TSP TSP TSP TSP,

Base Size 10 mm 20 mm 20 mm 20 mm
Prism Layer Thickness 45% 67% 20.5% 16.8%

Number of Layers 4 1 1 1
Prism Layer Stretching 1.0 1.0 1.0 1.0

Cell Count 81,577 39,858 11,376 24,304
y+ 18.7 206.0 122.0 200.8

Mach 0.029 0.029 0.058 0.115
R+ 1.3 2.5 4.8 11.9

Table 4: Properties used for Case 3, ε/D = 0.0005.

Figures 14 and 15 shows the mesh used for two of the cases. Figure 14 shows a finer mesh at the walls, but

both cases yield good residuals (see Appendix A).

Figure 14: Mesh used for Re 100,000 with ε/D = 0.0005

Properties Re 50,000 Re 100,000 Re 200,000 Re 500,000
Mesh Type TSP TSP TSP TSP

Base Size 20 mm 20 mm 20 mm 20 mm
Prism Layer Thickness 91.5% 52% 10% 20%

Number of Layers 2 1 1 1
Prism Layer Stretching 1.0 1.0 1.0 1.0

Cell Count 6,336 44,672 11,376 24,304
y+ 140.7 165.7 66.3 250.1

Mach 0.029 0.029 0.058 0.115
R+ 2.4 4.5 9.6 22.6

Table 5: Properties used in Case 4, ε/D = 0.0009.
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Figure 15: Mesh used for Re 200,000 with roughness ε/D = 0.0009

5.2 90 Degree Bend

When running simulations using a 90◦ bend, the cases are based on previous experimental setup reported

by Salehi, Sleiti and Idem [5] and also by Koch [4]. The ultimate goal of these simulations are to confirm

the effects of varying both Reynolds number and the diameter when calculating the pressure loss. We made

sure that every residual went below 10−6.

To properly resolve the sublayer when dealing with bends, the number of prism layers were increased for

increasing Reynolds numbers. When varying the diameter, we first ran simulations using the RSM model.

Then, we compared the results we attained, with the κ − ε model. The RSM model gave satisfactory

residuals while the κ− ε model did not. The exact same mesh was used in each of the cases. When varying

the Reynolds number, the diameters used were 150mm, 200 mm and 250mm. Incompressible flow were set

for all cases. Figure 17 shows how the CAD model for 90 degree bend was made, by extruding the sketch in

figure 16.

Figure 16: Sketch of 90 degree bend
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Figure 17: Geometry of a 90 degree bend, STAR-CCM+

Table 6, 7 and 8 show the input data for the varying diameter cases, with constant Reynolds numbers at

Re=10,000, Re=50,000 and Re=150,000. As the geometry now is more complex, it has been added number

of iterations before convergence and the runtime before reaching residuals values at < 10−6. With given

geometry and cell count, cases are bound to require more time. The following tables in this sections contains

NPL and PLT, respectively number of prism layers and prism layer thickness.

Varied diameter run with Re=10,000 and RSM model
Diameter [mm] Base size [mm] Cell count NPL PLT Run time Iterations

100 20 65,259 8 30 % 2.3 min 391
125 20 88,039 8 30 % 3.7 min 450
150 20 111,235 8 40% 4.7 min 440
175 20 113,053 8 40% 5.1 min 495
200 20 109,107 8 50% 4.5 min 479
225 20 106,421 8 50% 4.8 min 456
250 20 137,439 8 60% 5.8 min 484
275 20 166,489 8 60% 8.0 min 551
300 20 201,452 8 70% 12.4 min 615
400 20 372,846 8 70% 25.3 min 726

Table 6: Properties used for varying diameter with Re=10,000
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Varied diameter run with Re=50,000 and RSM model
Diameter [mm] Base size [mm] Cell count NPL PLT Run time Iterations

100 20 65,259 8 30 % 2.5 min 433
125 20 88,039 8 30 % 4.0 min 495
150 20 111,235 8 40% 7.9 min 833
175 20 113,053 8 40% 8.2 min 783
200 20 109,758 8 30% 4.7 min 471
225 20 106,421 8 50% 8.8 min 961
250 20 137,439 8 60% 10.1 min 832
275 20 166,489 8 60% 16.2 min 1117
300 20 201,452 8 70% 21.8 min 1,180
400 20 372,846 8 70% 22.2 min 655

Table 7: Properties used for varying diameter with Re=50,000

Varied diameter run with Re=100,000 and RSM model
Diameter [mm] Base size [mm] Cell count NPL PLT Run time Iterations

100 20 78,243 10 30 % 4.0 min 595
125 20 104,975 10 30 % 4.0 min 426
150 20 132,303 10 40% 7.9 min 632
175 20 134,409 10 40% 11.4 min 935
200 20 129,743 10 50% 9.1 min 779
225 20 126,481 10 50% 7.0 min 650
250 20 162,963 10 60% 13.3 min 872
275 20 196,833 10 60% 16.6 min 1,000
300 20 236,243 10 100% 22.0 min 1,082
400 20 492,848 12 120% 31.8 min 730

Table 8: Properties used for varying diameter with Re=100,000

Tables 9, 10 and 11 show properties used for the varying Reynolds number cases with constant diameters

at d/mm=150, d/mm=200 and d/mm=250. All cases are run using a smooth 90 degree bend. In order

to achieve satisfactory residuals, some of the lower Reynolds number cases required a decreased number of

prism layers.

Varied Reynolds number run with d/mm=150 and RSM model
Reynolds number Base size [mm] Cell count NPL PLT Run time Iterations

10,000 20 110,449 8 40 % 7.3 min 472
50,000 20 130,611 10 60 % 10.4 min 940
100,000 20 130,968 10 50% 14.5 min 1,201
150,000 20 130,968 10 50% 9.3 min 791
200,000 20 131,373 10 40% 5.9 min 533
250,000 20 131,373 10 40% 6.1 min 541
300,000 20 131,373 10 40% 5.1 min 461
350,000 20 131,373 10 40% 6.6 min 587
400,000 20 131,373 10 40% 7.9 min 701
500,000 20 131,373 10 40% 5.6 min 505

Table 9: Properties used with varying Reynolds numbers and d/mm=150
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Varied Reynolds number run with d/mm=200 and RSM model
Reynolds number Base size [mm] Cell count NPL PLT Run time Iterations

10,000 20 117 230 9 40 % 10.0 min 838
50,000 20 117,230 9 40 % 8.1 min 767
100,000 20 127,024 10 50% 8.8 min 814
150,000 20 127,024 10 50% 8.8 min 813
200,000 20 127,024 10 50% 7.9 min 737
250,000 20 127,024 10 50% 6.9 min 648
300,000 20 127,024 10 50% 5.9 min 540
350,000 20 127,024 10 50% 6.1 min 503
400,000 20 127,024 10 50% 5.2 min 486
500,000 20 127,024 10 50% 5.7 min 501

Table 10: Properties used with varying Reynolds numbers and d/mm=200

Varied Reynolds number run with d/mm=250 and RSM model
Reynolds number Base size [mm] Cell count NPL PLT Run time Iterations

10,000 20 103,279 6 60 % 4.2 min 450
50,000 20 150,415 10 60 % 11.0 min 877
100,000 20 150,415 10 60% 10.3 min 810
150,000 20 150,415 10 60% 9.9 min 783
200,000 20 150,415 10 60% 9.8 min 777
250,000 20 150,415 10 60% 9.5 min 727
300,000 20 150,415 10 60% 10.1 min 728
350,000 20 150,415 10 60% 6.6 min 514
400,000 20 150,415 10 60% 7.0 min 534
500,000 20 150,931 10 40% 7.2 min 563

Table 11: Properties used with varying Reynolds numbers and d/mm=250

Figure 18 shows a typical mesh in a plane section used for one of the pipe bend cases. It shows a polyhedral

mesh network, which is used in all of the bend cases.

31



Figure 18: Mesh used for bend with Re 400,000 and diameter 200mm

5.3 Matlab

When presenting the results, we wanted to show a plot including our own values compared to both the

Haaland and Colebrook equations. In order to do this suitable, a Matlab script is made. By implementing

the equations, given the range of Reynolds numbers and friction factors, and values found by STAR-CCM+,

we were able to present our results in a fashionable way.
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6 Results and Discussion

In addition to results presented as digits and plots, various visualizations provided by STAR-CCM+ offer to

show planes of flow behavior at positions of interest based on the geometry. The visualizations can contribute

to the understanding of the results to the non-specialist and offer a simplified way of interpreting what is

really happening during a fluid flow through a domain. Figure 19 shows a typical plane containing the

behavior of velocity and pressure through a straight pipe.

Figure 19: A typical velocity and pressure plane

6.1 Straight Pipe

The results regarding the straight pipe are mainly to validate STAR-CCM+’s ability to compute pressure

loss in a circular pipe by comparing total pressure loss calculated by the software to the Haaland equation,

the Colebrook equation (the Moody chart). Keeping in mind eventual errors including user errors, due to

the complexity of the program, all results are accompanied by relevant input values and mathematical work.

All values shown in this section have converging residuals in STAR-CCM+.
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Figure 20: Residuals for Re 50,000 in smooth pipe

Figure 20 shows the residuals for Re=50,000 in a smooth pipe, converging beyond the point 10−6. Residuals

for cases with straight pipes with rough walls are given in appendix A. Our initial work disclosed simulations

in a smooth, straight pipe followed by three runs with various wall roughnesses. All cases were run with four

different Reynolds numbers, to acquire sufficient data for a full validation.

Unmodified y+ with Roughness ε/D = 0.0009
Reynolds Number Turbulence Model Percentage of Error

50,000
κ− ε 6.9
κ− ω 6.5
RSM 5.3

100,000
κ− ε 13.4
κ− ω 9.1
RSM 12.3

200,000
κ− ε 3.8
κ− ω 6.8
RSM 14.9

500,000
κ− ε 27.7
κ− ω 19.7
RSM 12.2

Table 12: Percentage of error with unmodified y+

When running the simulations with unmodified y+ and with roughness ε/D = 0.0009 for the three different

models, we cannot find a pattern other then the apparent increase in error relative to the increase of the

Reynolds number (see table 12). The y+ range in these cases are 25 ≤ y+ ≤ 30.
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Figure 21: Reynolds number vs friction factor including comparing results

Table 12 and figure 21 presents the results given varying the turbulence model with the four Reynolds

numbers from previous cases. By keeping the y+ unmodified, the results, if nothing else, show great variation

in simulating the flow through a straight pipe and appear to increase the error relative to the increase of

Reynolds number for all models. A further detailed study can be done in the future to comprehensively

conclude the behavior of these models.

Modified y+ with κ− ε
Reynolds Number Roughness ε/D Percentage of Error

50,000

Smooth 0.5
0.0001 0.7
0.0005 0.2
0.0009 0.6

100,000

Smooth 0.08
0.0001 0.1
0.0005 0.4
0.0009 0.02

200,000

Smooth 0.1
0.0001 0.2
0.0005 0.2
0.0009 0.02

500,000

Smooth 0.3
0.0001 0.01
0.0005 0.01
0.0009 0.1

Table 13: Percentage of error with modified y+
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The percentage of error shown in the tables are relative to the Haaland equation. Table 13 presents results

given from sixteen separate cases, varying Reynolds number and wall roughness. They have all been simulated

using the κ− ε model and the values of y+ have been modified in the range of 17 ≤ y+ ≤ 250 to each case

to ensure a low percentage of error, here consistently below 0.7%. When comparing these results to the ones

reported by Salehi [5], their percentage of error was less than 3% in their case for Re higher than 250,000 for

a smooth pipe, using the κ− ε model, when comparing the results with the Colebrook equation. For a rough

pipe with ε/D = 0.0009 their results show accuracy within 7% error for Re higher 250,000 and within 12%

error for Re lower than 250,000. One might want to interpret these results as if confirming the accuracy of

STAR-CCM+’s way of calculating fluid flow through a circular pipe.

Figure 22: Reynolds number vs friction factor including comparing results

Figure 22 is a plot generated from Matlab. This compares the simulated results with both the Colebrook

and the Haaland equations. Along with the table showing the percentage of error, we can conclude that the

best results were given with modified y+ values using the κ− ε model.

6.2 90 Degree Bend

When interpreting the results from the bend cases, research papers given by, among others, Koch and Salehi

are used to compare. Salehi’s research include results using the RSM turbulence models with a range of

errors between 4 and 16%. Their conclusions included recommendations for turbulence model selections for

both smooth and rough pipes along with recommended range of y+. For smooth duct walls they recommend

using the κ− ε turbulence model for Re > 100, 000 flow in straight duct with enhanced wall treatment grid

requirements of 3 ≤ y+ ≤ 4. For rough duct walls they recommend using the κ − ε turbulence model for

Re > 100, 000 flow in straight duct with wall functions grid requirements of 25 ≤ y+ ≤ 30. They add that
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for all geometries with rough duct walls you should use wall functions grid requirements of 25 ≤ y+ ≤ 30.

As for elbows they recommend using the RSM turbulence models. [5].

Figure 23: Residuals for bend with Re 400,000

Figure 23 shows the residuals for bend with Re=400,000.

When varying the Reynolds number, the following results are based on a relative zeta value, with a reference

value at Re=200,000. Calculation of the reference value are taken as an average of three zeta values for

Re=200,000, and is found to be 0.266. The correction factor CRe is calculated using the following formula:

CRe =
ζ

ζ∗
(23)

where ζ∗ is the reference value at a chosen Reynolds number. We report CRe in the following texts and

compare the results with the available literature.
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6.2.1 Varying Diameter

Zeta values
d/mm Re=10,000 Re=50,000 Re=100,000

100 0.511 0.356 0.289
125 0.516 0.362 0.289
150 0.54 0.363 0.289
175 0.531 0.367 0.287
200 0.516 0.384 0.28
225 0.517 0.359 0.277
250 0.533 0.358 0.277
275 0.55 0.371 0.285
300 0.583 0.386 0.293
400 0.6 0.419 0.316

Deviation 0.089 0.063 0.039

Table 14: Zeta values with varying diameter

Referring to figure 24, it appears that the zeta value is in some fashion independent of the diameter. Based

on read reports on this issue [4], these CFD results are quite different from the results in Koch. To verify

these results, a comparison to the Reynold vs zeta was made. In this case we ran simulations with a variation

of diameters and made plots for three different Reynolds numbers. These three points where divided by ζ∗

and plotted against the varying Reynolds curve. With some deviation from the original curve. We know that

every simulation comes with a simulation error, so we still believe that these points matches the Reynolds

plot, because of the pattern of the location of the points. This reveals that zeta is predominally a function

of the Reynolds number. However, the diameter may play a role in the calculation of the zeta value.

Figure 24: Zeta values plot with varying diameter
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6.2.2 Varying Reynolds Number

When varying the Reynolds numbers in the range from Re=10,000 to Re= 500,000 in ten cases, each case

was run with three different diameters in order to compare the deviation to one another.

CRe values with varying Reynolds number
Reynolds number d/mm=150 d/mm=200 d/mm=250

10,000 1.98 1.90 2.22
50,000 1.38 1.38 1.39
100,000 1.17 1.20 1.21
150,000 1.04 1.08 1.09
200,000 1 1 1
250,000 0.93 0.93 0.93
300,000 0.88 0.88 0.87
350,000 0.83 0.84 0.83
400,000 0.79 0.80 0.79
500,000 0.72 0.73 0.82

Deviation +98% to -28% +90% to -27% +122% to -18%

Table 15: CRe values with varying Reynolds number

Figure 25: CRe plot with varying Reynolds numbers and constant diameter

Figure 25 shows three points adapted from the varying diameter case and are obtained from figure 24. As

figure 24 shows little variation in the zeta values relative to the diameter, the results were plotted as the

three points in figure 25, making the predictions of the effects on Reynolds number even more solid. Based

on the plot in figure 25, assumptions were made that the graph represents an exponential form, or a “power”-

equation. An online regression tool was used to resolve an equation [15]. When using this tool, the equations
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suggested comes with an average relative error where every point deviates from the input x- and y values.

The exponential form gives an average relative error of 10.74% whereas the power equation has an average

relative error of 1.75%. Therefore, a power regression on the form CRe = aRe−b is used from our CFD input

data and led to the equation:

CRe = 21.6(Re)−0.254 (24)

The power equation is based on the average graph.

Zeta values
Reynolds number d/mm=150 d/mm=200 d/mm=250

10,000 0.547 0.505 0.574
50,000 0.38 0.365 0.358
100,000 0.323 0.318 0.311
150,000 0.286 0.288 0.281
200,000 0.276 0.265 0.258
250,000 0.257 0.248 0.24
300,000 0.241 0.234 0.226
350,000 0.229 0.222 0.213
400,000 0.218 0.212 0.203
500,000 0.199 0.195 0.211

Deviation 0.348 0.31 0.363

Table 16: Zeta values with varying Reynolds number

In the range of Reynolds numbers from Re=100,000 and Re=500,000 the deviations show a pattern for the

three diameters, with deviations within the range of +21% to -28%, which in itself clearly states the effects

of Reynolds number on pressure loss in a 90 degree smooth bend. However, when studying the range of

Reynolds numbers between Re=10,000 and Re=50,000, we notice a great deviation, mainly for Re=10,000

with d/mm=250, with a relative ζ value at 122%. We can also see an increase ranging from 38% on all other

cases within this Reynolds range. Koch presented values adapted from the European Report for a smooth

90 degree bend using d=250 mm [4] and Re=200.000 as reference value:

Re CRe
50,000 1.37
100,000 1.16
150,000 1.08
200,000 1
250,000 0.99
300,000 0.98
350,000 0.97
400,000 0.96

Table 17: CRe values for d/mm=250 with varying Reynolds number by Koch [4]
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Figure 26: CRe plot with varying Reynolds number and d/mm=250, comparing own results with results
given by the European Report [16].

Figure 26 shows the variation of CRe with d/mm=250 for varied Reynolds numbers, with the reference

value at Re=200,000, including our own results and results adapted from the European Report. The values

presented by Koch [4] are in the range of Reynolds numbers 50, 000 ≤ Re ≤ 400, 000, a slightly smaller

range then our own. When observing and comparing the results, there is a similar pattern which can be

interpreted as confirmation on the predictions made.
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7 Conclusions

During our work in this thesis, including several runs not included in the report, assumptions regarding

chosen properties for input data are made to help future users of STAR-CCM+ to reach their predictions.

This report includes comprehensive input data accompanying all results, making the possibility for validation

easier for future research. This report, however, stands out by using STAR-CCM+ as the simulation tool.

Results concerning straight pipe with wall roughness and with 90 degree bends, using air as a fluid in most

of the cases, are the product of several runs for different input data. All cases also have residuals converging

to the value of 10−6. Ultimately, these results are presented with recommendations regarding turbulence

models, wall treatment and mesh selections among other data.

• In the cases involving straight pipes the κ−ε turbulence model is recommended along with the trimmer

mesh.

– When dealing with smooth pipes we recommend using 1 < y+ < 14 for better accuracy.

– For rough pipes we recommend using 17 < y+ < 250. In this range we found excellent accuracy

involving error consistently below 0.7%.

Keep in mind, for all straight pipe cases, simulations are run with a prerequisite that the fluid is incompress-

ible. In order to justify this according to the natural laws, make sure the Mach number is < 0.3 for ideal

gas.

• When simulating pressure loss through a circular pipe with a 90◦ bend, we recommend using the RSM

turbulence model with the polyhedral mesh.

From the present study it appears that the pressure loss coefficient is not varying appreciatively with diam-

eter. The pressure loss coefficient is a predominant function of Reynolds number for internal flows through

pipes. A curve fitting shows the functional dependency as below

CRe = 21.6(Re)−0.254 (25)

for 90◦ bend in the range of 10, 000 ≤ Re ≤ 500, 000. This lies within the average relative error of 1.7 %

compared to results attained in this report.
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8 Appendix A. Residuals Straight Pipe

Figure 27: Residuals for Re 50,000 with κ− ε model

Figure 28: Residuals for Re 100,000 with κ− ε model
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Figure 29: Residuals for Re 200,000 with κ− ε model

Figure 30: Residuals for Re 500,000 with κ− ε model

45



Figure 31: Residuals for Re 50,000 with κ− ω model

Figure 32: Residuals for Re 100,000 with κ− ω model
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Figure 33: Residuals for Re 200,000 with κ− ω model

Figure 34: Residuals for Re 500,000 with κ− ω model
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Figure 35: Residuals for Re 50,000 with RSM model

Figure 36: Residuals for Re 100,000 with RSM model

48



Figure 37: Residuals for Re 200,000 with RSM model

Figure 38: Residuals for Re 500,000 with RSM model
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9 Appendix B. Residuals 90 Degree Bend

Figure 39: Residuals for Re 10,000 and d/mm=200 with RSM model

Figure 40: Residuals for Re 50,000 and d/mm=200 with RSM model
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Figure 41: Residuals for Re 100,000 and d/mm=200 with RSM model

Figure 42: Residuals for Re 200,000 and d/mm=150 with RSM model
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Figure 43: Residuals for Re 200,000 and d/mm=200 with RSM model

Figure 44: Residuals for Re 200,000 and d/mm=250 with RSM model
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