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Abstract

The advent of machine learning and arti�cial intelligence (AI) in healthcare has revolutionized
data analysis and patient care. However, utilizing real patient data presents substantial privacy
and security challenges. This thesis tackles these challenges by exploring the application
of Auto-Encoders (AEs) and Variational Auto-Encoders (VAEs) in synthetic healthcare data
generation, offering an alternative to the typical use within Generative Adversarial Networks
(GANs).

While techniques like CTGAN are known for generating realistic synthetic data, there is
variability in how different implementations address the security of the original data during
generation. This study leverages the unique data encoding capabilities of AEs and VAEs to
propose a method that enhances data security, thereby producing synthetic data that upholds
privacy while retaining utility for AI applications in healthcare, such as disease diagnosis and
predictive modeling.

The methodology was rigorously tested across three diverse healthcare datasets, varying in
size and characteristics, to ensure the effectiveness of the proposed solutions in protecting
original data privacy while generating high-quality synthetic data. These methods were
further evaluated using the Anonymeter tool to assess privacy risks thoroughly, ensuring a
robust validation against the datasets used in prior research and af�rming the advancements
made by integrating AEs and VAEs.

This work contributes to the �eld of healthcare AI by providing a secure data generation
framework that balances data utility with privacy. It sets the stage for future research
in developing privacy-compliant AI systems in healthcare, highlighting the potential for
widespread application of synthetic data while maintaining stringent privacy standards.

For more information, detailed implementations, and additional resources, please visit the
project's: GitHub Repository.

Keywords: AI, Auto-Encoders, Variational Auto-Encoders, synthetic data, data privacy,
Anonymeter, healthcare datasets, machine learning, predictive modeling.
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Chapter 1

Introduction

1.1 Motivation and Background

The broader landscape of data generation using Generative Adversarial Networks (GANs)
presents its own set of challenges and opportunities. In recent times, GANs have emerged as
a potent tool for generating complex data types, including images, speech, and text. However,
the generation and evaluation of structured, high-dimensional tabular data present unique
challenges. GANs, comprising a generator and a discriminator in adversarial training, excel
in creating new data akin to a given dataset. Yet, the structured nature of tabular data, often
stored in rows and columns like Excel spreadsheets, poses dif�culties, especially when dealing
with private sector data subject to stringent privacy regulations. The generation of high-
quality synthetic tabular data is challenging due to the diversity of data types in columns
and the complexity of non-Gaussian numerical data distributions. Consequently, there is
no universally accepted generative model for tabular data, as different GAN models offer
advantages in speci�c domains.

The integration of Arti�cial Intelligence (AI) and Machine Learning (ML) in healthcare has
been transformative, yet it faces critical challenges in data privacy and security. The previous
work on Synthetic Tabular Data Generation (STDG) using CTGAN and CopulaGAN which
are subsets of Generative Adversarial Networks (GANs) laid a foundation for addressing data
scarcity and partial-privacy in healthcare. Building upon this, our study recognizes a pivotal
gap: the need for enhanced robust data security in the generation of synthetic healthcare data.
While GANs have proven effective in creating realistic synthetic datasets, the security of the
original data during this process has not been suf�ciently addressed. This thesis aims to �ll
this gap by exploring the application of Auto-Encoders (AEs) and Variational Auto-Encoders
(VAEs), subsets of GAN, focusing on securing original healthcare data while maintaining the
utility of the synthetic output.

1.2 Problem Statement

The primary problem addressed in this research is the vulnerability of original healthcare
data when used in traditional synthetic data generation techniques, including GANs. Risks
such as data leakage, unauthorized access, and potential reconstruction of original data
pose signi�cant threats to patient privacy and data integrity. This study seeks to explore
the integration of AEs and VAEs in healthcare data generation, focusing on enhancing data
security while maintaining the utility of the data and ensuring the con�dentiality and integrity
of the original datasets.

• How can AEs and VAEs be effectively integrated to enhance the security of original
healthcare data in the synthetic data generation process?

• What impact does this integration have on the quality and utility of the generated
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synthetic data?

• How can the balance between data security and clinical utility be optimized in synthetic
healthcare data?

1.3 Research Objectives and Goals

The overarching objective of this research is to develop a secure and ef�cient framework for
synthetic healthcare data generation that leverages the unique capabilities of AEs and VAEs.
The speci�c goals include:

• To design and implement an integrated model that employs AEs and VAEs to enhance
data security through sensitive data preprocessing.

• To evaluate the effectiveness of this model across various healthcare datasets, ensuring
�delity of data while generating high-quality synthetic data.

• To contribute to the advancement of secure and privacy-preserving synthetic data
generation (SDG) in healthcare, focusing on the balance between data security, privacy,
and clinical applicability.

1.4 Signi�cance of the Study

This study is signi�cant as it addresses the pressing need for secure arti�cial intelligence
applications in healthcare. By enhancing data security through the innovative use of AEs
and VAEs in synthetic data generation, this research contributes to the safe and ethical use
of AI in healthcare, aligning with data protection laws and ethical standards. The �ndings aim
to bolster trust in and applicability of synthetic healthcare data, facilitating its broader use in
research and clinical practice.

For those interested in the detailed implementations, code, and datasets used in this research,
all resources are comprehensively documented and made publicly available in the project's
GitHub repository. The repository can be accessed at GitHub Repository for Enhancing Data
Security with AE and VAE.

1.5 Scope of the Study

The scope of this thesis encompasses:

• Theoretical exploration of AEs and VAEs and their application in enhancing the security
of synthetic data generation.

• Practical implementation and testing of the integrated model using diverse healthcare
datasets.

• Empirical analysis of the model's performance in real-world scenarios, assessing data
security, �delity, and clinical utility.

1.6 Structure of the Thesis

This thesis is organized as follows: Chapter 2: Literature Review - A comprehensive review
of relevant literature on AEs, VAEs, and data security in healthcare. Chapter 3: Methodology
and Experimental Setup - Detailed description of the research methodology, including model
design, and implementation strategies. And explanation of the experimental design. Chapter
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4: Results and Data Analysis - Presentation and analytical techniques. Chapter 5: Discussion
and Future Directions- Discussion of the research �ndings, their implications, and limitations.
And suggestions for future research in this area. Chapter 6: Conclusion - Concluding remarks
and
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Chapter 2

Background

This chapter embarks on an extensive exploration of the foundational theories and related
works pivotal to understanding and advancing the project's goals. The chapter begins by
elucidating the core principles of neural networks, laying the groundwork for comprehending
the intricate mechanisms of Generative Adversarial Networks (GANs). It further dissects
the architecture of GANs, spotlighting the innovative variants that have been tailored for
speci�c applications, including those in healthcare data synthesis. A signi�cant focus is
placed on the integration of Auto-Encoders (AEs) and Variational Auto-Encoders (VAEs) and
integrating them into Conditional Tabular Generative Adversarial Networks (CTGAN) within
the GAN framework, highlighting their critical role in enhancing data security and privacy.
This discussion extends to the examination of various tabular GAN models, emphasizing
their adaptability and effectiveness in generating synthetic healthcare data. The chapter
also discusses the evaluation metrics and methodologies employed to assess the �delity and
utility of the synthesized data, ensuring it meets the stringent requirements of healthcare
applications. Through a meticulous review of existing literature and emerging studies, this
chapter aims to weave a comprehensive narrative that not only contextualizes the project
within the broader �eld of AI in healthcare but also sets the stage for the innovative
contributions this research aspires to make.

2.1 Neural Network Models

Figure 2.1: Basic neuron model structural framework.

Neural networks, a cornerstone of Arti�cial Intelligence (AI), emulate the brain's method
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of processing information through a complex system of neurons, or nodes, that interact by
sending electrical signals. These biological neurons generate outputs from inputs they receive,
with the signi�cance of each input determined by its weight [44, 68]. A basic neural network
structure, depicted in Figure 2.1, demonstrates the core functionality of a neuron, laying the
groundwork for the development of neural networks.
Basic Structure of an ANN.
At its core, an ANN is composed of nodes, or "neurons," arranged in layers: an input layer, one
or more hidden layers, and an output layer. Each neuron in one layer connects to neurons in
the next layer through pathways that are associated with weights, which are adjusted during
the learning process.

• Input Layer: This is the entry point of the network. Each neuron in the input layer
represents a feature of the input data. For example, in image recognition, each input
neuron could represent a pixel's intensity.

• Hidden Layers: These layers perform the bulk of the computation through a network of
neurons that process inputs from the previous layer. The hidden layers can extract and
amplify features relevant to the task at hand, such as edges in visual data or semantic
patterns in text.

• Output Layer: The �nal layer produces the network's output, such as a class label in
a classi�cation task or a value in a regression task. The structure of the output layer
depends on the speci�c problem being addressed [44, 68].

Neuron Functionality.
Each neuron receives input from its predecessors, which it aggregates and transforms using
an activation function. The activation function is crucial as it introduces non-linearity into the
network, enabling it to learn complex patterns:

• Weighted Sum: A neuron calculates the weighted sum of its inputs, adding a bias term
to account for input-independent adjustments.

• Activation Function: Common activation functions include the sigmoid, tanh, and ReLU
(Recti�ed Linear Unit). These functions determine whether a neuron activates and to
what extent, in�uencing the signal passed to subsequent neurons.

This basic neuron model, depicted in Figure 2.1, encapsulates a neuron's essential operations
and lays the groundwork for constructing more complex neural network architectures.

2.1.1 Feed-Forward Neural Network

Feed-forward neural networks represent a fundamental architecture in neural network design,
characterized by their ability to operate in both single-layer and multi-layer con�gurations. In
its simplest form, a single-layer feed-forward network consists of just an input layer and an
output layer. The input layer is tasked with receiving data, and the output layer is responsible
for delivering the �nal computational results. Due to the network's linear, acyclic nature,
information �ows in a one-way direction from the input to the output neurons, without any
feedback loops [78]. This straightforward structure, illustrated in Figure 2.2, underpins the
basic operational framework of feed-forward networks.

2.1.2 Multi-layer feed-forward network model

A multi-layer feed-forward network enhances the basic architecture of a single-layer network
by incorporating one or more hidden layers situated between the input and output
layers. These hidden layers play a crucial role in performing complex computations and
transformations on the data before it reaches the output layer. Through these intermediate
layers, the network is capable of automatically generating features and applying necessary
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Figure 2.2: Single-layer feed-forward network.

Figure 2.3: Multi-layer feed-forward network model.

transformations, thereby enriching the data processing capabilities of the model. The �ow
of information remains unidirectional, progressing sequentially from the input layer, through
each hidden layer, and �nally to the output layer. The complexity of the task at hand dictates
the requisite number of hidden layers; simple tasks might be well-served by a single hidden
layer, whereas more intricate problems could necessitate multiple hidden layers to achieve
optimal performance [78]. The selection of the number of hidden layers and neurons is
pivotal, as an incorrect con�guration could lead to under�tting or over�tting, compromising
the model's effectiveness. The intricacies of these issues and their implications will be further
explored in Section 2.1.4.

2.1.3 Multi-layer back-propagation network model

For the backward propagation approach, also known as back-propagation, this method is
integral to training multi-layer feed-forward networks. Back-propagation is a systematic way
of updating the weights of the neurons in all layers, from the output back to the input layer,
based on the error rate obtained in the output compared to the expected result. This process
involves calculating the gradient of the loss function with respect to each weight by the chain
rule, effectively measuring the impact of each weight on the loss. By iteratively adjusting
the weights in the direction that minimizes the error, the network learns to make more
accurate predictions. The back-propagation algorithm is crucial for optimizing the network's
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Figure 2.4: Multi-layer back-propagation network model.

performance, allowing it to learn complex patterns and relationships within the data. The
depth and con�guration of the hidden layers, which are meticulously adjusted during this
process, are critical for the network's ability to solve complex problems without falling into
the pitfalls of under�tting or over�tting [78].

2.1.4 Training Neural Networks

Training deep neural networks, characterized by their multiple hidden layers, relies on the
backpropagation algorithm to re�ne the learning mechanism. This algorithm systematically
tunes the network's weights and biases to reduce discrepancies between the predicted and
actual outcomes. The essence of backpropagation lies in a two-phase cycle: a forward pass
and a backward pass. Initially, input data propagate forward through the network, leading to
the generation of predictions. These predictions are then evaluated against true values, with
discrepancies quanti�ed via a loss function. Subsequently, the computed error is disseminated
backward across the network, prompting adjustments in weights and biases through an
optimization algorithm. This backward pass leverages the gradient of the loss function,
calculated with respect to each parameter via the chain rule, to guide the adjustments that aim
to diminish the loss. This cyclical adjustment process persists until the network's predictions
align closely with the actual data, signifying a reduction in error to a tolerable extent [68, 69].
The choice of an optimization algorithm plays a pivotal role in navigating the parameter space

towards the set of weights and biases that optimally reduce the error. The effectiveness of
the training process hinges on this selection, with numerous algorithms at disposal. Among
these, Stochastic Gradient Descent (SGD) and Adam stand out for their prevalent application
in contemporary machine learning endeavors. These algorithms differ in their approach to
adjusting parameters, with SGD focusing on updating parameters in a manner that minimizes
the loss on a subset of the data at each iteration, and Adam enhancing this process by
incorporating mechanisms that adjust the learning rate dynamically, accounting for the �rst
and second moments of the gradients[25, 76].

Optimizing Neural Networks with Gradient Descent Techniques

In the realm of neural network optimization, gradient descent algorithms play a pivotal role
by striving to minimize the cost function, guiding the model towards a local minimum. This
optimization technique is versatile, encompassing batch, stochastic, and mini-batch variations,
each tailored to different training dynamics.

8



• Batch Gradient Descent (BGD), also known as Vanilla Gradient Descent, operates on the
principle of adjusting parameters by calculating the gradient of the loss function across
the entire dataset. The update formula is given by:

q = q � h � r qJ(q) (2.1)

where h represents the learning rate, a critical factor in�uencing the optimization speed
and stability. A higher h accelerates convergence but risks bypassing the optimal
solution, whereas a lower h ensures more accurate convergence at the expense of
increased computation time. The gradient r qJ(q) directs the parameter adjustments,
aiming to reduce the loss function J(q). The comprehensive dataset usage in BGD, while
thorough, renders it computationally intensive for large data volumes [70].

• Stochastic Gradient Descent (SGD) introduces a more dynamic approach by updating
parameters for each individual training instance, thereby enhancing computational
ef�ciency. The update mechanism is described as [70]:

q = q � h � r qJ(q; xi , yi ) (2.2)

In this context, xi and yi denote individual training inputs and their corresponding
labels, making SGD faster but more susceptible to �uctuations, potentially affecting
convergence precision.

• Mini-Batch Gradient Descent emerges as a balanced strategy, updating parameters in
small subsets of the training data, de�ned by:

q = q � h � r qJ(q; xi :i+ n : yi :i+ n) (2.3)

This method combines the best of both worlds, leveraging batch ef�ciency and the
stochastic approach's responsiveness, thus facilitating a smoother and more reliable path
toward optimization [70]. Each variant of gradient descent offers unique advantages,
with the choice largely dependent on the speci�c requirements of the neural network
task at hand. The mini-batch approach is frequently favored for its equilibrium between
ef�ciency and convergence stability, marking it as a versatile choice in neural network
training endeavors.

Adam: An Advanced Optimization Technique for Neural Networks.

Adam, an acronym for Adaptive Moment Estimation, stands out as a sophisticated optimiz-
ation algorithm that synergizes the strengths of Stochastic Gradient Descent (SGD) with mo-
mentum. It ingeniously incorporates the bene�ts of two prominent optimization methods,
AdaGrad and RMSProp, to enhance neural network training ef�ciency while maintaining min-
imal memory usage [25, 76]. The hallmark of Adam is its ability to adjust learning rates for
individual parameters dynamically through the computation of the gradients' �rst and second
moments. This adaptability ensures that each parameter's learning rate is �ne-tuned based on
the historical gradients and their variability, a feature not present in traditional SGD, which
applies a uniform learning rate across all updates [41]. Adam's methodological approach to
adjusting learning rates on the �y makes it exceptionally adept at navigating the complex
landscapes of neural network parameters. This adaptability not only accelerates the conver-
gence process but also improves the overall training performance, especially in scenarios with
intricate parameter spaces. Consequently, Adam is celebrated for its contribution to the ef�-
cient and effective optimization of neural networks, marking a signi�cant advancement over
conventional methods [41].
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RMSprop: Enhancing Gradient Descent for Non-Stationary Objectives

RMSprop, short for Root Mean Square Propagation, is an optimization algorithm designed to
resolve the diminishing or exploding learning rates issues encountered in AdaGrad. RMSprop
modi�es the AdaGrad approach to provide an adaptive learning rate that can be more suitable
for dealing with non-stationary objectives, as often seen in recurrent neural networks and other
deep learning models.
The update rule for RMSprop is given by:

1. Calculate the squared gradient:

E[g2]t = bE[g2]t � 1 + ( 1 � b)g2
t (2.4)

2. Update the parameter:

qt+ 1 = qt �
h

p
E[g2]t + e

gt (2.5)

Where:

• E[g2]t is the moving average of the squared gradients at time step t,

• b is the decay rate, typically set to 0.9,

• gt is the gradient at time step t,

• h is the learning rate,

• e is a small scalar (e.g., 1e� 8) to prevent division by zero.

The core idea behind RMSprop is to maintain a moving average of the squared gradients for
each weight and to divide the learning rate by this average. This ensures that the learning rate
is adjusted dynamically, allowing for larger updates for infrequent parameters and smaller
updates for frequent ones. RMSprop's adaptive learning rate makes it particularly effective
for problems where the optimal parameter space is complex and the gradients may change
signi�cantly across different training epochs[25, 41, 76].

Momentum: Accelerating SGD in the Relevant Direction

Momentum is a technique applied to the stochastic gradient descent (SGD) algorithm to
accelerate the convergence towards the global minimum of the loss function. Incorporating
a fraction of the update vector of the past steps to the current step helps in smoothing out the
variations during training. This is akin to adding inertia to overcome the local minima and to
speed up the descent in steady downhill directions[19, 52].

1. Update the velocity:
vt = gvt � 1 + hgt (2.6)

2. Update the parameter:
qt+ 1 = qt � vt (2.7)

Where:

• vt is the velocity at time step t,

• g is the momentum coef�cient, close to 1 (e.g., 0.9),

• h is the learning rate,

• gt is the gradient at time step t.
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The momentum method accumulates an exponentially decaying moving average of past
gradients and continues to move in their direction, increasing the speed of convergence.
This approach not only helps in faster convergence but also aids in navigating through
the rough terrain of the loss function landscape, making it a preferred choice in deep
learning optimizations where the surface can be highly non-convex [19]. Both RMSprop
and Momentum are pivotal in modern machine learning, offering unique advantages in
optimizing neural networks. RMSprop addresses the issue of adaptive learning rate effectively,
while Momentum accelerates the convergence by leveraging the direction of the previous
gradients. Together with Adam and Gradient Descent, these algorithms form the backbone
of optimization strategies in the �eld, each with its speci�c use cases and advantages[19, 41].

2.1.5 Activation Functions

In the realm of neural networks, activation functions are pivotal, serving as the gatekeepers
of non-linearity, which is essential for the networks to capture complex patterns beyond what
linear models can achieve [23]. Let's explore the essence and mathematical underpinnings of
some fundamental activation functions, which are instrumental in enabling neural networks
to understand and model intricate data relationships.

Sigmoid Function

The Sigmoid function, denoted as s(x), is a foundational activation function that maps any
input value x to a range between 0 and 1, following the equation:

s(x) =
1

1 + e� x (2.8)

This characteristic makes it particularly suitable for binary classi�cation tasks, especially
in the output layer of simpler or shallow neural networks [23]. Despite its widespread
use, the Sigmoid function can lead to challenges such as the vanishing gradient problem,
particularly in deeper networks, as gradients of large magnitudes can become insubstantial
during backpropagation, slowing down the learning process or halting it altogether.

Hyperbolic Tangent (Tanh) Function

The Tanh function, a scaled version of the Sigmoid, outputs values in a range of -1 to 1. It is
mathematically expressed as:

tanh(x) =
ex � e� x

ex + e� x (2.9)

Alternatively, it can be related to the Sigmoid function as:

tanh(x) = 2s(2x) � 1 (2.10)

The Tanh function's output range allows it to handle data that spans both positive and negative
values, making it more effective than the Sigmoid function in certain contexts, especially for
hidden layers in a network [23].

Recti�ed Linear Unit (ReLU) Function

The ReLU function has become the default activation function for many types of neural
networks due to its simplicity and ef�ciency [23]. It is de�ned as:

ReLU(x) = max(0,x) (2.11)

The derivative of the function, g0(x), is de�ned as:

g0(x) =

(
x if x � 0

0 if x < 0
(2.12)
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This piecewise function outputs x if x is positive and 0 otherwise. Its linear, non-saturating
form facilitates faster convergence during training by mitigating the vanishing gradient
problem [23]. However, ReLU can lead to dead neurons in which neurons stop responding
to variations in error due to negative input values.

Leaky ReLU

To address the shortcomings of ReLU, the Leaky ReLU variant allows a small, non-zero
gradient when the unit is not active, and x is less than zero:

Leaky ReLU(x) =

(
x if x > 0

0.01x if x � 0
(2.13)

Leaky ReLU ensures that all neurons remain active and updated during training, preventing
the dying ReLU problem, and promoting more consistent learning across the network's
architecture [23]. These activation functions are the linchpins in the design of neural networks,
each with its own set of advantages and trade-offs, in�uencing the network's ability to learn
and generalize from the data it's trained on.

2.1.6 Regularization Techniques

In the quest to optimize neural network performance, addressing the challenges of over�tting
and under�tting is paramount. Over�tting is characterized by a model's exceptional
performance on training data coupled with poor generalization to new, unseen data. This
discrepancy often manifests as low training errors but elevated validation errors, indicating
the model's tendency to memorize rather than learn from the training data. Conversely,
under�tting occurs when a model fails to capture the underlying structure of the data, re�ected
in subpar performance on both training and validation datasets [43]. To mitigate these issues,

regularization techniques are employed, introducing modi�cations to the training process to
enhance the model's generalization capabilities. Among the most prevalent regularization
strategies are L1 and L2 regularization, dropout, and batch normalization, each with its unique
approach to improving model robustness.

L1 Regularization (LASSO)

L1 regularization, or Least Absolute Shrinkage and Selection Operator (LASSO), imposes a
penalty on the absolute magnitude of the model weights. This method encourages a sparse
model with fewer weights, effectively reducing the model's complexity by driving non-critical
feature weights to zero. The primary aim is to enhance feature selection, prioritizing the most
in�uential features for the model's predictions [48].

L2 Regularization (Ridge/Tikhonov Regularization)

L2 regularization, also known as ridge or Tikhonov regularization, penalizes the square of the
weights. Unlike L1, which can zero out weights entirely, L2 regularization tends to distribute
the penalty across all weights, diminishing their magnitude without necessarily driving them
to zero. This approach is less about feature elimination and more about ensuring no single
feature dominates the model's output [63].

Dropout

Dropout is a dynamic regularization technique that randomly deactivates a subset of neurons
during the training process. By temporarily removing neurons from the network, dropout
prevents the model from becoming overly dependent on any speci�c set of features, promoting
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more distributed and robust learning. This technique is particularly effective in reducing
over�tting by simulating a wide variety of network architectures [63].

Batch Normalization

Batch normalization tackles the issue of internal covariance shift, where the distribution of
inputs to layers shifts during training, complicating the learning process. By normalizing
the inputs to each layer for every mini-batch, batch normalization stabilizes the learning
environment, allowing for higher learning rates and more ef�cient training. This not
only accelerates the training process but also contributes to improved model stability and
performance on unseen data [38]. Regularization techniques are essential tools in the neural
network toolkit, each contributing to the model's ability to learn from the data effectively
without over�tting or under�tting. By carefully applying these techniques, practitioners can
enhance the robustness and generalization of their neural network models, ensuring they
perform well across a variety of datasets.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) represent a paradigm shift in the �eld of machine
learning, moving beyond the traditional con�nes of supervised learning, where models are
trained on a prede�ned set of labeled data [18]. Supervised learning, despite its effectiveness
in tasks such as classi�cation and prediction, is inherently limited by its reliance on extensive,
human-annotated datasets. This limitation has spurred interest in unsupervised learning
approaches, which aim to reduce dependency on labeled data and human oversight.

Generative Modeling: A Leap into Unsupervised Learning Generative modeling, a subset
of unsupervised learning, focuses on understanding and replicating the distribution of a
given dataset. The objective is to model the underlying data-generating process, allowing
for the creation of new data instances that are indistinguishable from real data. Generative
Adversarial Networks (GANs) emerge as a powerful implementation of generative modeling,
primarily known for their ability to synthesize highly realistic images [34].

2.2.1 Architecture and Training

Generative Adversarial Networks (GANs) embody a groundbreaking neural network frame-
work that revolutionizes the way machines learn data patterns. This dual-network ar-
chitecture, capable of functioning within both semi-supervised and unsupervised learning
paradigms, showcases a dynamic interplay between two neural networks: the generator and
the discriminator. The essence of GANs lies in their adversarial process, where the generator
endeavors to fabricate data that mirrors the authenticity of real-world data, and the discrim-
inator evaluates these creations alongside actual data to discern their genuineness [17]. The
generator's goal is to produce images that closely resemble authentic images, while the dis-
criminator evaluates both real and synthetic images to distinguish between the two. The gen-
erator improves its output based on feedback from the discriminator, which has access to both
real and generated images. The discriminator's task is to accurately classify images as real or
fake, using error analysis through backpropagation to guide the generator's improvements.
The aim is to reach a point where the generator's images are indistinguishable from real im-
ages, achieving an equilibrium where the discriminator's accuracy is equivalent to random
guessing.

During GAN training, both networks are optimized simultaneously. The discriminator aims
to improve its classi�cation accuracy, while the generator seeks to produce images that the
discriminator will classify as real. This process is governed by the value function V (G, D),
de�ned as [33]:
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Figure 2.5: The architecture of Generative Adversarial Networks (GANs) showing the
interaction between the generator and discriminator.

max
D

min
G

V (G, D) = E pdata(x) [log D(x)] + E pz(z) [log(1 � G(z))] (2.14)

Here, G and D represent the generator and discriminator functions, respectively. pz is the
probability distribution of the latent space, and pdata is the probability distribution of the
training dataset. The discriminator's goal is to maximize V by correctly identifying real and
generated samples, while the generator aims to minimize V, indicating its success in deceiving
the discriminator [33].
The discriminator is considered optimal when:

D � (x) =
pdata(x)

pdata(x) + pg(x)
(2.15)

And the generator reaches optimality when the generated data distribution pg(x) matches the
real data distribution pdata(x), rendering the discriminator's accuracy no better than random
guessing.

2.2.2 Navigating the Challenges of GAN Training

Training Generative Adversarial Networks (GANs) presents a unique set of challenges that
can signi�cantly impact their performance and stability. These challenges stem from the
adversarial nature of GANs, where two networks, a generator and a discriminator, are
trained simultaneously in a dynamic contest. This section investigates the common hurdles
encountered during GAN training, including convergence issues, vanishing gradients, mode
collapse, oscillatory loss, and the complexity of hyperparameter tuning [29, 51].

Convergence Dif�culties: Achieving convergence in GANs is notoriously dif�cult due to
the adversarial training process. Ideally, convergence signi�es that the model has reached
an optimal state where further training does not yield signi�cant improvements. However,
in the context of GANs, where the generator and discriminator are in a constant tug-of-
war, maintaining a balance where both networks improve at a compatible rate is challenging.
Non-convergence is often signaled by poor quality in the generated data, indicating that one
network has outpaced the other, leading to stagnation in learning [62, 72].
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Vanishing Gradients: A critical issue in GAN training is the vanishing gradient problem,
particularly when the discriminator becomes too pro�cient early in training. This scenario
results in the generator receiving minimal feedback to guide its improvements, effectively
stalling its learning process. The discriminator's overwhelming accuracy creates a feedback
void, preventing the generator from re�ning its output based on constructive criticism [29, 50].

Mode Collapse: Mode collapse occurs when the generator discovers a narrow path to deceive
the discriminator, leading to a lack of diversity in the generated samples. This phenomenon
restricts the generator to a subset of the data distribution, often producing repetitive or highly
similar outputs. The root cause of mode collapse can be an overly dominant discriminator or a
generator that settles for producing safe samples that are less likely to be classi�ed as fake [15,
73, 77].

Oscillatory Loss: The training process of GANs can sometimes be characterized by oscillatory
loss, where the loss metrics exhibit erratic �uctuations instead of stabilizing or showing
consistent improvement. This instability complicates the training process, making it dif�cult
to gauge the networks' progress and adjust training parameters effectively [29].

Hyperparameter Tuning: The complexity of GAN architectures necessitates meticulous
hyperparameter tuning to achieve optimal performance. The vast array of hyperparameters,
combined with the intricate interplay between the generator and discriminator, makes this task
particularly daunting. Traditional methods like Grid Search are often impractical for GANs
due to the computational demands and the nuanced impact of each parameter on the training
dynamics [15, 29, 45, 62].

2.3 Exploring GAN Architectures

Beyond the foundational Vanilla GAN introduced by [80, 87], the �eld has seen the emergence
of diverse GAN architectures, each tailored to overcome speci�c challenges or to enhance
performance in generating complex data distributions. This section highlights signi�cant
advancements in GAN architectures, focusing on their unique features and applications.

2.3.1 Conditional GAN (CGAN)

Introduced by Mirza and Osindero in 2014, Conditional GANs (CGANs) emerged to overcome
the limitations of Vanilla GANs, particularly their inability to direct the generation process [56].
CGANs integrate additional information, such as class labels or other relevant data, into the
training phase, enabling a more targeted generation of data. This approach allows CGANs
to produce data speci�c to predetermined categories, enhancing the versatility of GANs for
various applications. The modi�cation involves adding a conditional variable y to both the
generator and discriminator, leading to a new training equation:

V (G, D) = E pdata(x) [log D(xjy)] + E pz(z) [log(1 � G(zjy))] (2.16)

This advancement has paved the way for CGANs to be applied in tasks like image-to-image
translation and more, where conditional input plays a crucial role in shaping the output.

2.3.2 Deep Convolutional GAN (DCGAN)

To address the challenge of generating high-quality images, Radford et al. introduced Deep
Convolutional GANs (DCGANs) in 2015. By incorporating Convolutional Neural Networks
(CNNs) into both the generator and discriminator, DCGANs signi�cantly improve the quality
of generated images. CNNs, known for their effectiveness in image-related tasks, analyze
input images through layers of convolution and pooling to identify and extract features [75].
DCGANs enhance this process with architectural guidelines such as replacing pooling layers
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with down-sampling convolutions in the discriminator, using deconvolutions in the generator,
and applying batch normalization to both. These guidelines, along with the use of speci�c
activation functions (ReLU in the generator and LeakyReLU in the discriminator), contribute
to the improved stability and performance of DCGANs in image generation tasks [66].

2.3.3 Wasserstein GAN

Introduced in 2017 by Arjovsky and colleagues [2, 3], the Wasserstein Generative Adversarial
Network (WGAN) marks a signi�cant advancement in stabilizing GAN training and
mitigating the issue of mode collapse, where the generator tends to produce a narrow range of
outputs. Unlike traditional GANs, WGAN introduces a novel loss metric, the Earth Mover's
Distance (EMD) or Wasserstein metric, enhancing the interpretability of learning curves and
aiding in the �ne-tuning of model parameters. This metric measures the discrepancy between
the distribution of real and generated data without relying on binary classi�cation, offering a
more nuanced assessment of model performance.

In WGAN, the discriminator, referred to as the critic , evaluates the EMD, aiming to quantify
the effort required to transform the generated data distribution into the real data distribution.
The goal of the generator is to minimize this distance, effectively making the generated data
indistinguishable from real data. This approach not only provides a clearer understanding of
the model's loss but also simpli�es hyperparameter optimization by incorporating a clipping
constraint to regulate the training process, offering a straightforward criterion for determining
convergence.

The introduction of the 1-Lipschitz constraint further stabilizes training by ensuring the critic's
output remains within a bounded gradient, reducing the risk of vanishing gradients and
over�tting [7, 46]. This technical adjustment allows the critic to offer more detailed feedback
to the generator, promoting the production of varied outputs that more accurately re�ect the
diversity of the target distribution [28]. Consequently, WGAN addresses the challenge of mode
collapse, facilitating the generation of a broader array of samples and enhancing the overall
robustness of GAN training

2.3.4 Wasserstein GAN with Gradient Penalty (WGAN-GP)

The WGAN with Gradient Penalty (WGAN-GP) improves upon the original WGAN by
introducing a gradient penalty to enhance training stability and sample quality, addressing
issues like low-quality outputs and convergence dif�culties. This adjustment avoids explicit
weight clipping through a Lipschitz constraint, with a gradient penalty coef�cient l
recommended at l = 10, subject to model and dataset speci�cs. WGAN-GP diverges from
common GAN practices by employing layer normalization in the critic, leading to better
stability and performance without extensive hyperparameter tuning.

2.4 Generating Synthetic Tabular Data Using GANs

For Synthetic Tabular Data Generation (STDG), GANs offer a robust alternative to traditional
statistical models, especially for large datasets. They are trained to mimic the data distribution
across a dataset's columns, producing synthetic tables that closely resemble real data and can
handle diverse data types including discrete, continuous, and categorical. Despite being an
emerging �eld, GANs for STDG have shown promise, with various approaches being explored
to overcome challenges and effectively evaluate synthetic data quality[62].
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2.4.1 Highlight of Tabular GAN Methods

Reviews by [36] and [16] highlight the superiority of GAN-based methods in Synthetic Tabular
Data Generation (STDG) but do not single out a de�nitive best approach. The effectiveness of
GAN models varies with dataset speci�cs, necessitating experimentation to identify the most
suitable architecture. Despite challenges in balancing resemblance, privacy, and utility, several
notable GAN models have emerged:

• MedGAN [14] in 2017, pioneer in synthesizing medical data, leveraging an autoencoder
within its GAN framework to adeptly handle binary and count data types, aiming for a
realistic emulation of patient records.

• MedWGAN and MedBGAN [5] in 2018, enhance MedGAN's capabilities by integrating
WGAN-GP for MedWGAN and a boundary-seeking GAN for MedBGAN, respectively,
elevating the realism in patient record generation.

• MedGAN [9] 2018 innovation re�nes MedGAN to generate superior multicategorical
data, incorporating Gumbel softmax layers, thus broadening the scope of data types the
model can accurately replicate.

• HealthGAN [84], introduced by Yale et al. in 2020, overcomes MedGAN's constraints,
particularly in handling categorical data, by incorporating WGAN-GP, thereby improv-
ing the model's versatility and accuracy in data synthesis.

• TableGAN and TGAN , developed by [59] and [82] respectively, are distinguished
by their focus on producing synthetic records across a spectrum of data types, with
TableGAN utilizing CNNs for structure and TGAN employing RNNs to enhance
sequential data generation.

• CTGAN and CopulaGAN [60, 62, 83], represent evolutionary steps forward, introducing
sophisticated techniques for condition-speci�c data generation, trained with WGAN-GP,
thus enabling more targeted and nuanced synthetic data creation.

• TimeGAN [85], speci�cally tackles the intricacies of time-series data, integrating
autoencoding mechanisms to preserve temporal dynamics, offering a nuanced approach
to time-series synthesis.

• C-TABGAN and TabFairGAN [67, 88], the latest in the series, not only push the envelope
in data type diversity and handling imbalances but also embed fairness directly into the
GAN architecture, setting new standards for ethical synthetic data generation.

These models demonstrate the evolving landscape of GAN-based STDG, each contributing
unique solutions to the challenges of generating realistic, privacy-conscious synthetic tabular
data.

2.4.2 Issues in Generating Synthetic Tabular Data with GANs

Tabular GANs face unique challenges when generating synthetic data, particularly from
complex datasets like Electronic Health Records (EHRs), which often exhibit class imbalance
[30]. This imbalance can skew the model's performance, leading to biased predictions.
Additionally, the diversity in data distribution across columns can cause issues such as non-
convergence and vanishing gradients [8]. Sparse data and one-hot encoding further complicate
training, as the discriminator may struggle to distinguish between real and synthetic data
based on rarity rather than authenticity [8].

To mitigate these issues, it's crucial to utilize diverse and high-quality datasets, including those
directly sourced from healthcare providers, to ensure a broad representation of real-world
complexities. However, the lack of standardized documentation and potential quality issues
in open-source datasets pose signi�cant challenges to data reliability and model validity [31].
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Tabular GAN Approach Year Underlying Model Framework

MedGAN [14, 62] 2017 Vanilla GAN, Auto-encoder
MedWGAN [5, 62] 2018 WGAN-GP
MedBGAN [5, 62] 2018 BGAN
MedGAN with Gumbel-softmax [9, 62] 2018 Traditional GAN, Auto-encoder
HealthGAN [62, 84] 2020 WGAN-GP
TableGAN [59, 62] 2018 DCGAN
TGAN [62, 82] 2018 Traditional GAN
CTGAN [62, 83] 2019 WGAN-GP
CopulaGAN [60, 62] 2019 WGAN-GP
TimeGAN [62, 85] 2019 RCGAN, C-RNN-GAN
C-TABGAN [62, 88] 2021 CGAN
TabFairGAN [62, 67] 2022 WGAN

Table 2.1: Highlight of common Tabular GAN methods and the key framework composition.

2.4.3 Exploring CTGANs for Synthetic Tabular Data Generation

The invention of Conditional Generative Adversarial Networks (CTGAN) can be attributed to
the researchers Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachan-
eni from the Massachusetts Institute of Technology (MIT). Their work, titled "Modeling Tab-
ular Data using Conditional GAN," was presented and elaborated upon in their research pa-
per. This work laid the foundation for CTGAN, introducing a novel approach to generating
synthetic tabular data, particularly effective in handling the complexities associated with cat-
egorical and imbalanced data[83]. It can be conditioned on speci�c data features, enabling the
generation of synthetic data that mirrors the conditional distributions of the original dataset.

Figure 2.6: The Conditional Tabular Generative Adversarial Networks (GANs) showing the
interaction between the generator and discriminator.

To complement the visual depiction of a Conditional Tabular Generative Adversarial Network
(CTGAN), here's a breakdown of the CTGAN components as depicted in the above �gure:

1. Sample Value V for Xc : This represents a speci�c condition or value for a categorical
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column Xc in the dataset. For instance, if Xc is the "Gender" column, V could be "Male".
This condition guides the generation process to produce data that adheres to this speci�c
characteristic.

2. Condition: Xc = V : This condition serves as an input to both the generator and
discriminator, indicating that the synthetic data generation should focus on records
matching Xc = V. It ensures that the generated data respects the speci�ed condition,
allowing for targeted data augmentation.

3. Arrow for Data Retrieving : This arrow points from the condition Xc = V to the original
dataset, signifying the process of selecting or considering real data instances that match
the given condition. This step is crucial for learning the distribution of data conditioned
on Xc = V.

4. Conditional Generator (G) with Z � N (0,1): The generator G takes noise Z drawn from a
normal distribution N (0,1) and the condition Xc = V as inputs. It then generates synthetic
records that not only resemble the real data but also satisfy the speci�ed condition Xc =
V.

5. Arrow Pointing to Discriminator (D) with a Generated Record : This arrow indicates the
�ow of synthetic data from the generator G to the discriminator D. The discriminator's
role is to distinguish between real data instances from the original dataset and fake
instances generated byG.

6. Loss L 'Real or Fake' : This phrase under the discriminator D represents the outcome
of the discrimination process. The loss L quanti�es how well D can differentiate real
data from fake. During training, G aims to minimize this loss by improving its ability to
generate data that D cannot easily classify as fake.

7. Arrow from Original Data to Discriminator (D) with Record Xc = v : This represents the
�ow of real data instances that satisfy the condition Xc = V into the discriminator D. It
allows D to learn the characteristics of real data that matches the speci�ed condition.

8. Arrow from Condition: Xc = V to Discriminator (D) : This indicates that the
discriminator also receives the condition Xc = V as part of its input, allowing it to
evaluate whether the records (both real and synthetic) align with the speci�ed condition.

CTGAN leverages the adversarial relationship between the generator G and the discriminator
D to produce high-quality synthetic tabular data that is conditioned on speci�c features.
By incorporating conditions directly into the generation process, CTGAN ensures that the
synthetic data not only mimics the overall distribution of the original dataset but also adheres
to speci�c characteristics de�ned by the user. This capability makes CTGAN an invaluable
tool for data augmentation, privacy preservation, and overcoming data imbalances in machine
learning applications.

2.4.4 Dissimilarity and Similarity Between STDG and CTGAN

Synthetic Tabular Data Generation (STDG) and CTGAN (Conditional Tabular Generative
Adversarial Network) both address the challenge of generating synthetic tabular data, but
they do so in different manners. Here's a breakdown of their key differences and similarities,
as well as insights into their usage and underlying algorithms:
Key Dissimilarity

• De�nition and Scope:
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• STDG is a broad term that encompasses various methodologies and algorithms used
to generate synthetic data resembling original tabular datasets. It includes a wide
range of techniques, from simpler statistical methods to more complex machine
learning models.

• CTGAN is a speci�c type of GAN (Generative Adversarial Network) designed to
generate synthetic tabular data. It addresses speci�c challenges of tabular data, such
as handling mixed data types (continuous and discrete variables) and imbalanced
data.

• Algorithm Speci�city:

• STDG does not refer to a speci�c algorithm but rather a category of methods, which
can include anything from basic duplication with noise addition to sophisticated
deep learning models.

• CTGAN speci�cally utilizes a generative adversarial network architecture with
modi�cations to better suit tabular data, such as using conditional vectors to handle
category imbalance and mode-speci�c normalization for continuous columns.

Key Similarities

• Objective: Both STDG and CTGAN aim to generate new tabular data points that
maintain the statistical properties of the original dataset. This includes preserving
relationships between variables, distributions of individual columns, and potentially the
privacy of the data subjects.

• Use Cases:They can be used for similar purposes, such as data augmentation (increasing
the size of a dataset), privacy-preserving data sharing, imbalanced dataset handling, and
synthetic dataset creation for testing machine learning models.

Can They Be Used the Same Way?
While STDG and CTGAN can be used for similar end goals, the approach and implementation
details will differ based on the chosen STDG technique. CTGAN offers a more speci�c,
ready-to-use solution for synthetic tabular data generation, especially bene�cial for complex
datasets with mixed types of data and class imbalances. STDG techniques might require more
customization or selection of appropriate methods based on the dataset's characteristics and
the speci�c requirements of the task at hand.

Do They Share the Same Algorithm?
No, CTGAN is a speci�c algorithm within the broader category of STDG methods. STDG
encompasses a wide range of algorithms, including but not limited to GAN-based approaches
like CTGAN. Other STDG methods might employ different machine learning models,
statistical techniques, or data manipulation strategies that do not utilize the adversarial
training approach central to CTGAN.

While both STDG and CTGAN serve the purpose of generating synthetic tabular data, CTGAN
provides a targeted approach with innovations speci�cally designed to address the nuances of
tabular datasets. STDG, being a broader term, offers a wider array of methods that can be
tailored to various data generation needs, not all of which will leverage the advanced features
or require the complexity of CTGAN. The choice between using a speci�c method like CTGAN
or another STDG technique depends on the dataset's speci�c challenges, the desired level of
sophistication in handling those challenges, and the expertise available to implement these
solutions.

2.4.5 Evaluation Metrics for Synthetic Data Generation

Evaluating the effectiveness of Generative Adversarial Networks (GANs) in creating synthetic
tabular data involves three key dimensions: resemblance to original data, utility in machine
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learning tasks, and privacy protection. These metrics offer insights into the synthetic data's
quality and its applicability in various domains.

Comparative Analysis

Comparative analysis measures resemblance or how closely synthetic data mirrors the
statistical properties of the original dataset. This involves comparing basic statistical measures
(mean, median, standard deviation) and employing more sophisticated tests to ensure the
synthetic data accurately re�ects the original data's distribution [35].

• Statistical Comparisons : Direct comparison of univariate statistics such as mean,
median, and standard deviation between synthetic and real data.

• Dimension-Wise (DW) Testing : Evaluates each feature's distribution by comparing
synthetic and real data using probability and distance metrics. Common tests include
the Bernoulli's success probability, chi-squared tests for binary features, and the Student
T-test for continuous features.

• Distance Metrics : Tools like Cosine Distance measure the similarity between the
feature distributions of synthetic and real data, with smaller distances indicating better
resemblance.

• Joint Distribution Analysis : Ensures that the synthetic data maintains the real
data's inter-feature relationships, using metrics like Jensen-Shannon Divergence and
Wasserstein Distance.

• Correlation Analysis : Assesses whether synthetic data preserves the real data's
inter-dimensional relationships and correlations, employing Pearson and Spearman
correlation coef�cients among others.

• Visualization : Distribution plots and principal component analysis (PCA) visually
compare the real and synthetic data, highlighting their statistical and structural
similarities.

Data Visualization Techniques

Data Visualization Techniques refer to a broad range of methods and tools used to graphically
represent complex data sets, making them easier to understand and interpret. These
techniques transform numerical and categorical data into visual formats, such as charts,
graphs, plots, and maps, allowing users to observe patterns, trends, anomalies, and
correlations within the data. Effective data visualization aids in data analysis, decision-
making, and communication of insights to both technical and non-technical audiences.

• Histogram : Histograms are graphical representations of data distribution, grouping data
into bins to visualize frequency and distribution characteristics.

• Density Plots : Density Plots provide a smooth, continuous version of histograms,
showing data distribution over an interval to identify concentration areas.

• Box Plots: Box Plots offer a visual summary of data's key quartiles, including the
median, the 25th and 75th percentiles, and outliers, useful for comparing distributions
and spotting outliers.

• Scatter Plots: A scatter plot uses dots to illustrate the relationship between two variables,
with each dot representing a data point. It's effective for spotting trends, correlations,
and outliers by observing the arrangement and direction of the dots.

• Heat Maps : A heat map uses color gradients to represent values, making it easy to
visualize complex data patterns. It's useful for identifying correlations and trends, with
color intensity indicating the magnitude of values.

21



Sensitivity Analysis and Utility Measurement

The utility of synthetic data in machine learning (ML) tasks is assessed by its ability to
substitute for real data without signi�cant loss in model performance. This dimension
evaluates whether models trained on synthetic data can achieve comparable results to those
trained on real data [29, 36].

• Train on Synthetic, Test on Real (TSTR) : A framework where ML models are trained on
synthetic data and tested on real data. High performance indicates the synthetic data's
effectiveness in capturing the original data's underlying distribution [27, 31].

• Train on Real, Test on Synthetic (TRTS ) : This involves training a model on real
data and testing it on synthetic data, assessing the utility of synthetic data for model
validation[31].

• Train on Synthetic, Test on Synthetic (TSTS) : TSTS, where both training and testing are
done on synthetic data, evaluates the internal consistency and reliability of synthetic data
for machine learning.

• Synthetic Ranking Agreement (SRA) : This method evaluates how well synthetic data
maintains the ranking order of predictive models based on their performance on real
data [40].

• Data Combination : Examines the impact of synthetic data when used to augment real
datasets, enhancing the diversity and size of training data for ML models [79].

• Performance Metrics : Common metrics such as Area Under the Curve (AUC), F1-score,
and Accuracy are used to quantify ML models' performance on synthetic versus real
data, providing a quantitative measure of the synthetic data's utility [16].

Privacy Risks Assessment

Privacy risk assessment is a process to identify and evaluate the risks of re-identi�cation in
shared or published datasets. It's vital to ensure that individual's privacy is maintained while
allowing data utility, such as medical records.

• T-Closeness: This technique addresses a limitation of k-anonymity and l-diversity by
ensuring that the distribution of a sensitive attribute within any group is no more than
a threshold t away from the distribution of the attribute in the entire dataset. This helps
protect against attacks that exploit the distribution of sensitive attributes.

• K-Anonymity : K-Anonymity ensures that each record in a dataset is indistinguishable
from at least k � 1 other records with respect to certain "quasi-identi�er" attributes. This
provides a measure of anonymity by preventing individual data from being singled out.

• L-Diversity : L-Diversity extends k-anonymity, requiring that the distribution of sensitive
attributes in each group has at least l "well-represented" values. It protects against attacks
leveraging insuf�cient diversity within anonymized groups.

• Differential Privacy (DP) : The gold standard for privacy protection in synthetic data,
DP ensures that the removal or addition of a single data point does not signi�cantly alter
the outcome of data analysis, thereby protecting individual privacy [26].

• Attack Methods : Evaluating privacy also involves testing the synthetic data against
potential attack methods, including membership inference attacks, attribute disclosure
attacks, and model inversion attacks. These methods assess the robustness of synthetic
data against attempts to extract or infer sensitive information [11, 58, 86].
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• Additional Privacy Measures : Other techniques, such as Euclidean distance checks,
exact match searches, and K-Nearest Neighbours (KNN) analysis, provide further
insights into the privacy aspects of synthetic datasets [16, 31].

Evaluation Criteria Overview

Figure 2.7 below summarizes the evaluation metrics and methods used in the literature for
assessing synthetic datasets across the four key criteria as listed in the �gure:

Figure 2.7: Assessment Criteria and Evaluation Techniques

Clinical Evaluation and Performance Considerations

• Clinical Evaluation: The involvement of health professionals in assessing synthetic
datasets is crucial but often overlooked. Only a minority of studies engage clinicians
to validate the practicality and reliability of synthetic patient data [16].

23



• Performance and Computational Cost: The ef�ciency of synthetic data generation
processes, in terms of computational resources and time, is rarely analysed. Yet, it's
essential for practical applications, especially in resource-constrained settings [35, 36].

• Privacy vs. Data Similarity: Achieving a balance between maintaining privacy
and ensuring high data �delity is challenging. Privacy measures often reduce the
resemblance to the original data, posing a dilemma for dataset creators [31].

• Standardization of Metrics: There's a lack of standardized benchmarks for evaluating
synthetic datasets, particularly in the medical �eld. This gap leads to inconsistencies and
challenges in comparing different synthetic data generation methods [31].

In conclusion, while generating high-quality synthetic datasets is feasible, incorporating
robust privacy protections without compromising data utility remains a complex challenge.
A multidimensional evaluation approach, involving both technical metrics and clinical
validation, is essential for advancing the �eld of synthetic data generation.
Each of these techniques and tools in the above discussions plays a speci�c role in data
analysis, privacy protection, and the evaluation of synthetic data, ensuring valuable insights
while respecting privacy.

2.5 Advancements and Hurdles in Synthetic Health Data Genera-
tion

The generation of synthetic health data stands at the forefront of healthcare research, tackling
the critical issue of data scarcity amidst strict regulatory frameworks. This initiative is
entangled with ethical concerns, notably the protection of patient privacy and the mitigation
of biases, highlighting the complexities of applying generative models in healthcare. The
process of data sampling requires rigorous scrutiny to avoid sample-selection biases, which
could compromise the generalizability of models. Such biases emerge when models
disproportionately represent certain demographics or are trained exclusively on data from
speci�c types of medical equipment, leading to outcomes that fail to generalize across different
patient populations [12]. Furthermore, class imbalance exacerbates biases, particularly in the
diagnosis and prognosis of rare diseases, emphasizing that the effectiveness of AI models
is contingent upon the quality and diversity of their training data [12]. The integration
of AI algorithms in medical devices is increasing, yet the reliance on current generative
models introduces concerns regarding patient privacy and data integrity. Vulnerabilities
like membership inference attacks underscore the risks associated with synthetic data, where
attackers could leverage model information to compromise patient con�dentiality [12].

In 2021, Chen et al. [12] highlighted the challenges in adopting synthetic data within
healthcare, proposing its use as a provisional solution for model enhancement. However,
the lack of clinical benchmarks for assessing the quality of synthetic data, especially for rare
diseases, presents signi�cant challenges. The dif�culty in interpreting evaluation metrics
by clinicians calls for the development of assessment tools that are more understandable
to healthcare professionals, to foster trust in the use of synthetic data [31]. The concept of
visual Turing tests for evaluating synthetic image data, although thorough, proves impractical
for large datasets and is less relevant for tabular health records due to their abstract nature
[31]. Expanding data collection across various healthcare institutions could improve model
robustness and generalizability. However, this approach faces challenges related to data
sharing regulations, which often con�ict with data protection laws [12].

This section primarily addresses the use of synthetic data to augment real data for model
re�nement and privacy concerns. Nonetheless, synthetic data harbours potential for broader
applications, including stress-testing AI algorithms, simulating diverse scenarios in virtual
environments, and training AI models on surgical errors without risking patient safety [12].

24



2.6 Autoencoders (AEs)

The concept of autoencoders was born by Rumelhart, Hinton, and Williams in 1986, aiming
to minimize reconstruction errors, essentially learning to replicate the input data as closely
as possible. Autoencoders have been applied in various domains, including dimensionality
reduction, feature learning, and anomaly detection. They are a subset of neural network
architectures used to learn ef�cient representations of input data, called encodings, in an
unsupervised manner. The primary goal of an autoencoder is to compress the input data
into a latent-space representation and then reconstruct the input data as accurately as possible
from this representation. This process involves two main components: the encoder, which
compresses the input, and the decoder, which reconstructs the input from the compressed
form back to its original dimension [71].

Unlike traditional supervised learning, where each input xi is paired with a corresponding
label yi , autoencoders deal with datasets ST comprising solely of inputs:

ST = f xi j I = 1, . . . ,Mg (2.17)

Here, xi 2 Rn represents an observation in an n-dimensional space, and M is the total number
of observations. Their ability to learn compressed representations makes them particularly
useful for enhancing data security, as the latent representation can be manipulated to remove
or alter sensitive information before reconstruction, thereby generating synthetic data that
preserves privacy.

Figure 2.8: Simple Autoencoder Architecture

The architecture of an autoencoder is divided into three key components:

1. Encoder: This function maps the input data to a latent space, effectively compressing the
data into a lower-dimensional representation[71].

2. Latent Space (Feature Representation): This is the core of the autoencoder, where
the data is represented in a compressed form. This latent space holds the "encoded"
information of the input data[71].

3. Decoder: The decoder function attempts to reconstruct the input data from the
compressed latent representation[71].

The encoder and decoder are neural networks themselves, and the latent space is typically
represented as a tensor of real numbers. The challenge and the art of designing an autoencoder
lie in ensuring that the latent space representation is both "informative" and "useful" for
further applications, such as feature extraction, data compression, or even generative tasks.
Autoencoders, particularly when structured with neural networks, offer a sophisticated
approach to learning data representations by encoding inputs into a compressed latent space
and subsequently reconstructing them. This process, facilitated by libraries like TensorFlow or
PyTorch, leverages backpropagation for ef�cient training[71]. The encoder function, denoted
asg, transforms the input xi into a latent representation hi , where hi 2 Rq, effectively reducing
the data to its essential features within a lower-dimensional space:
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hi = g(xi ) (2.18)

The decoder, represented by function f , then aims to reconstruct the input from this
compressed form:

x̃i = f (hi ) = f (g(xi )) (2.19)

The training objective of an autoencoder is to minimize the discrepancy between the original
input xi and its reconstruction x̃i , typically using a loss function that penalizes differences
between the two. This is formally expressed as:

arg min
f ,g

hL(xi , f (g(xi ))) i (2.20)

where L signi�es the loss function, measuring the reconstruction error, and the angle brackets
denote averaging over all samples. To prevent the autoencoder from merely learning an
identity function — which would be trivial and not particularly useful — two main strategies
are employed: introducing a bottleneck and applying regularization.

Regularization

Regularization introduces additional constraints or penalties on the model, encouraging it to
learn more robust and generalizable features. This can be achieved through various means,
such as penalizing the magnitude of the weights (L1/L2 regularization), encouraging sparsity
in the latent representations, or using dropout to prevent over-reliance on speci�c paths
through the network. By carefully designing the encoder and decoder functions ( g and f ,
respectively) and incorporating strategies like bottlenecks and regularization, autoencoders
can learn to compress and reconstruct data effectively. This process not only aids in data
compression but also in learning representations that are useful for tasks such as anomaly
detection, denoising, or even generative modelling. The goal is to achieve a balance where the
autoencoder reconstructs the inputs accurately while also discovering meaningful and useful
patterns in the data [4, 55].

Bottleneck Approach

The most straightforward regularization technique involves creating a bottleneck by reducing
the dimensionality of the latent space to be smaller than that of the input space. This forces the
autoencoder to prioritize which aspects of the input data are most important to retain, leading
to a more meaningful and compressed representation. Such representations are invaluable for
tasks like feature extraction, data compression, and more. However, it's worth noting that even
with a single bottleneck node, over�tting can occur if the encoder and decoder have enough
capacity to map each input sample to a unique code in the latent space[4, 55].

Beyond Bottlenecks: Advanced Regularization Techniques

When the latent space is large, preventing the autoencoder from defaulting to an identity
function requires more sophisticated forms of regularization. These methods aim to encourage
the autoencoder to learn useful features about the data rather than memorizing it:

• Sparse Autoencoders: By adding a sparsity constraint on the activations of the hidden
layers, sparse autoencoders encourage the model to represent each input with a small
number of active neurons in the bottleneck layer. This can lead to more distinctive and
interpretable representations[4, 55]. The key methods are:

i. L1 Regularization: A framework where ML models are trained on synthetic
data and tested on real data. High performance indicates the synthetic data's
effectiveness in capturing the original data's underlying distribution.
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ii. KL-Divergence: The method adjusts the sparsity level by manipulating the
expected activation probability p of each neuron. The empirical probability pj for
each neuron j is calculated across a batch, and the KL-divergence betweenp and pj

is minimized as part of the loss function.

• Denoising Autoencoders: These autoencoders are trained to reconstruct the original
input from a corrupted version, which forces the model to learn more robust features
of the data. The corrupted input x̃ follows a distribution C( x̃jx), with common choices
being Gaussian noiseN (x, s2I ) or dropout noise Bernoulli( p), where p is the probability
of an input element being kept[4, 55].

• Contractive Autoencoders: These autoencoders focus on making the learned represent-
ations robust to small input perturbations by penalizing the sensitivity of the hidden
representations to changes in the input. This is achieved by minimizing the Frobenius
norm of the Jacobian matrix of the encoder's activations with respect to the input, effect-
ively encouraging the encoder to ignore irrelevant input variations. The optimization
objective incorporates a regularization term for the Jacobian norm: where kJA (x)k2

F rep-
resents the squared Frobenius norm of the Jacobian matrix of the encoder function A
with respect to the input x, and l controls the strength of the regularization[4, 55].

• Feed-Forward Autoencoders: The structure of FFA includes an odd number of layers
which ensures symmetry around the central layer. For instance, in a network handling
inputs of dimension n = 30, the layers might be con�gured as follows: the �rst layer
(n1) has 30 neurons, the middle layer (n2) reduces to 15 neurons, and the �nal layer ( n3)
expands back to 30 neurons[55]. This illustration depicts the encoder-decoder structure
inherent to FFAs.

i. Encoder: The sequence of layers from the input to the bottleneck, progressively
compressing the data into a lower-dimensional representation. Mathematically
represented ashi = g(xi ), where g is the encoding function parameterized by the
network's weights up to the bottleneck.

ii. Decoder: The layers from the bottleneck back to the output, reconstructing the
input data from the compressed form. The decoder is mathematically represented
as x̂i = f (hi ) = f (g(xi )) , f being the decoding function.

Wasserstein Autoencoder (WAEs)

This is a variant of the autoencoder that aims to improve upon the Variational Autoencoder
(VAE) by using the Wasserstein distance as a measure of similarity between the generated data
distribution and the target data distribution[4]. Unlike VAEs, which minimize the Kullback-
Leibler (KL) divergence to ensure the encoded latent space distribution approximates a prior
distribution (often a Gaussian), WAEs focus on minimizing the Wasserstein distance, which
can lead to more stable training and better quality of generated samples. Mathematically,
WAE is represented as:

minimize EPX [loss(x, x0)] (2.21)

where PX is the distribution of the input data, x is an input sample, and x0 is its reconstruction,
loss(x, x0) is a reconstruction loss (e.g., MSE), . . .

Deep Feature Consistent Variational Autoencoder (DFCVAE)

This introduces a novel loss function for optimizing autoencoders that focuses on the
correlation between pixels rather than just the pixel-wise difference. Unlike traditional
methods that measure direct pixel differences, this approach considers how pixels relate
to each other. Variational Autoencoders (VAE) and Wasserstein Autoencoders (WAE) both
aim to minimize reconstruction errors and a regularization term. However, VAE tries
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to align each input's encoded distribution closely with a target distribution, leading to
potential overlaps and reconstruction issues. WAE, on the other hand, matches the overall
distribution of encoded inputs to the target, allowing for more distinct and spread-out latent
representations, which enhances reconstruction quality[4]. Pretrained classi�cation networks
are often repurposed for tasks like transfer learning and style transfer, leveraging their learned
features for new domains. Similarly, autoencoders can utilize these pretrained networks to
de�ne a more nuanced loss function. By comparing the original and reconstructed images'
representations within these networks, a more sophisticated and meaningful measure of
similarity is achieved, focusing on feature consistency rather than pixel-level accuracy[4].

Conditional Image Generation with Pixel-CNN Decoders (CIG-PCNND)

PixelCNN offers a unique approach to image generation by considering the spatial relation-
ships between pixels. It generates images pixel by pixel, using a prede�ned order (e.g., top
to bottom, left to right) and takes into account the local spatial context, which helps in produ-
cing more coherent and less blurred images. This method has evolved to incorporate Recur-
rent Neural Networks (RNNs) for capturing local statistics, maintaining the sequential pixel
generation concept. Integrating PixelCNN as a decoder within autoencoders allows for gener-
ating images in a structured manner, where each pixel's generation considers both its prede-
cessors and the encoded representation, leading to detailed and contextually accurate recon-
structions[4].

Balancing Bias-Variance in Autoencoders

The design of an autoencoder must navigate the bias-variance trade-off: aiming for low
reconstruction error (bias) while ensuring that the learned representations are generalizable
and meaningful (variance). The choice of regularization technique plays a crucial role
in achieving this balance, in�uencing both the quality of the data representation and the
autoencoder's ability to reconstruct inputs accurately. Through these regularization strategies,
autoencoders can be tailored to learn representations that capture the underlying structure of
the data, facilitating a wide range of applications from compression to generative modeling[4].

2.7 Variational Autoencoder (VAE)

Variational Autoencoders, introduced by Kingma and Welling in 2019, extend the concept
of traditional autoencoders by introducing a probabilistic twist. VAEs are designed to
generate new data that is like the training data. Unlike standard autoencoders, which learn
a deterministic function for encoding and decoding, VAEs model the encoding as a probability
distribution over the latent space. This probabilistic approach allows VAEs to generate new
data by sampling from the latent space distribution.

VAEs consist of two main components: the encoder, which maps the input data to a
distribution over the latent space, and the decoder, which samples from this distribution to
generate data that resembles the input data. The training process involves optimizing not only
the reconstruction loss but also a regularization term that encourages the learned distribution
to approximate a prior distribution, typically a Gaussian. This regularization term is crucial
for ensuring that the latent space has good properties for data generation. [42, 71].

In variational autoencoders, VAEs, the core idea is to learn the parameters that best describe
the data generation process by maximizing the marginal log-likelihood of the data. However,
directly maximizing this likelihood is challenging, so VAEs focus on maximizing a lower
bound on this likelihood, known as the variational lower bound. This bound is a function
of the encoder and decoder parameters and is maximized to improve the approximation of the
posterior distribution. The variational lower bound combines two terms: one penalizing the
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Figure 2.9: Simple Variational Autoencoder Architecture

difference between the approximate and true posterior distributions (using Kullback-Leibler
divergence) and another based on the expectation of the log-likelihood of the data given
the latent variables. Maximizing this lower bound effectively trains the VAE, making it a
powerful tool for generative modeling. In practice, VAEs use stochastic gradient optimization
and a technique known as the reparameterization trick to ef�ciently estimate gradients and
update model parameters. This approach allows VAEs to learn complex data distributions
and generate new data points that are like the observed data, making them highly useful for
tasks like image generation and feature extraction.

Instead of encoding an input x to a �xed latent representation z, the encoder in a VAE maps x
to a distribution over the latent space characterized by parameters (e.g., mean mand variance
s2) of a Gaussian distribution.
Encoder:

qf (zjx) = N (z; m(x), s2(x)) (2.22)

Here, qf (zjx) represents the approximate posterior distribution of the latent variable z given
an input x, parameterized by f , with m(x) and s2(x) being the mean and variance of z.
Reparameterization Trick: To enable backpropagation, VAEs use the reparameterization trick
for sampling z from the distribution:

z = m(x) + s(x) � e (2.23)

where e � N (0, I ) is a noise term.
Decoder: The decoder part remains similar to AEs, aiming to reconstruct x from z:

x̂ = gq(z) (2.24)

The objective function of a VAE includes two terms: a reconstruction loss (similar to AEs) and
a regularization term that encourages the learned distribution qf (zjx) to be close to the prior
distribution p(z), typically assumed to be a standard Gaussian N (0, I ). This is often expressed
using the Kullback-Leibler (KL) divergence:

L(x, x̂) = � Eqf (zjx) [log pq(xjz)] + KL(qf (zjx)jj p(z)) (2.25)

Key Mathematical Difference
The key mathematical difference between AE and VAE lies in the encoding process and
the objective function. AEs learn a deterministic mapping to a �xed latent representation,
focusing solely on minimizing the reconstruction error. In contrast, VAEs model the latent
space probabilistically, optimizing not just for reconstruction but also for the distribution of
the latent variables to approximate a prior distribution, incorporating the KL divergence into
their loss function to achieve this balance.

Table 2.10 illustrates the fundamental differences between Autoencoders and Variational Au-
toencoders, focusing on their encoding processes, the nature of the latent space, reparameter-
ization techniques, decoding processes, objective functions, and their key focuses.
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Figure 2.10: Key Differences Between Autoencoder and Variational Autoencoder

2.7.1 Activation Function of the Output Layer

ReLU

• Formula: ReLU (x) = max(0,x)

• Use Case: Suitable when inputs are positive. Not ideal for negative inputs as it outputs
zero for them.

Sigmoid

• Formula: s(x) = 1
1+ e� x

• Use Case: Best for inputs normalized between 0 and 1. Commonly used for binary
classi�cation problems or when output needs to be in the [0, 1] range.

2.7.2 Loss Function

Mean Square Error (MSE)

• Formula: LMSE = 1
M å (xi � x̃i )2

• Application: Universal, works well regardless of the activation function or input
normalization. Ideal for regression problems.

Binary Cross-Entropy (BCE)

• Formula: LCE = � 1
M å (xj,i log( x̃j,i ) + ( 1 � xj,i ) log(1 � x̃j,i ))

• Application: Suitable when the output layer uses a sigmoid function and inputs are
normalized between 0 and 1. Effective for classi�cation.

2.7.3 Reconstruction Error

• Common Metric: Mean Squared Error (MSE)

• Formula: RE � MSE = 1
M å (xi � x̃i )2

• Purpose: Measures the difference between original and reconstructed inputs. A lower
RE indicates better reconstruction quality.
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This summary encapsulates the essential aspects of activation functions, loss functions, and the
concept of reconstruction error in the context of autoencoders, providing a clear understanding
of when and why to use speci�c functions and how to evaluate autoencoder performance.

Figure 2.11: Key Differences Between Autoencoder and Variational Autoencoder

Table 2.11 summarizes the distinct features and primary applications of each type of
autoencoder, highlighting their versatility in various tasks such as dimensionality reduction,
feature learning, data denoising, and generative modeling.

2.8 Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) typically use Mean Squared Error (MSE) for training, which
can lead to slightly blurred images. However, they allow for inference over latent variables,
giving some control over the generated output[4]. On the other hand, Generative Adversarial
Networks (GANs) consist of a generator that creates new samples and a discriminator that
differentiates between real and generated samples. The training process, which involves a
competitive loss function, enhances the quality of generated data but at the cost of control
over the output. Several approaches have been explored to combine the bene�ts of VAEs
and GANs. For instance, Adversarial Autoencoders replace the KL-divergence in VAEs
with a discriminator that differentiates between the prior and posterior distributions. Other
variations modify the reconstruction loss in VAEs with a discriminator, blending the decoder
with the generator, or integrate the GAN's discriminator with an encoder, facilitating inference
in the latent space. These hybrid models aim to leverage the strengths of both architectures for
improved data generation and inference capabilities[4].
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2.9 Application Domains of Autoencoders

Autoencoders, particularly Variational Autoencoders (VAEs), serve as powerful generative
models, enabling the generation of new data samples by learning a probabilistic distribution of
the data. They �nd applications across various domains, from enhancing classi�cation results
to clustering, anomaly detection, recommendation systems, and dimensionality reduction.
Here's a simpli�ed overview of their applications:

Generative Models

Variational Autoencoders (VAEs) can generate new data samples by sampling from a learned
probabilistic distribution. This capability allows for the creation of new, meaningful samples
once the model is trained, as demonstrated with datasets like Tabular data, images or
MNIST[4].
It stands out in the generative models domain for their ability to learn complex data
distributions and generate new, unseen data points that mimic the original dataset. This is
particularly useful in �elds like drug discovery, where VAEs can generate novel molecular
structures for potential pharmaceuticals, or in content creation, where they can produce
diverse and realistic images, music, or text. For example, VAEs have been used to generate
realistic human faces, artwork, and even to interpolate between different musical genres,
demonstrating their versatility and power in creating high-quality, diverse outputs from
learned data distributions.

Classi�cation Enhancement

Autoencoders, by learning ef�cient data representations, can signi�cantly enhance classi�ca-
tion tasks, especially in semi-supervised learning scenarios. This is evident in image recogni-
tion, where autoencoders preprocess images to extract salient features, which are then used
by classi�cation models to improve accuracy[4]. For instance, in facial recognition systems,
autoencoders can help isolate features such as edges, shapes, and textures that are crucial for
identifying individuals, thereby improving the performance of the classi�er even with limited
labeled data.

Clustering

By compressing data into a lower-dimensional latent space, autoencoders simplify the
clustering of complex datasets by highlighting inherent groupings within the data[4]. This
approach has been bene�cial in customer segmentation, where businesses can cluster
customers based on purchasing behavior, preferences, and other characteristics to tailor
marketing strategies effectively. In genomics, autoencoders have facilitated the clustering of
genetic data, helping researchers identify patterns and similarities in genetic expressions that
might not be apparent in the high-dimensional original data.

Anomaly Detection

Autoencoders excel in anomaly detection by learning to reconstruct normal data while failing
to do so accurately for anomalies, resulting in high reconstruction errors for the latter[4].
This property is invaluable in cybersecurity, where autoencoders can detect unusual patterns
in network traf�c that may indicate a security breach as fraud detection. Similarly, in
manufacturing, autoencoders monitor equipment data to identify signs of future failures,
allowing for preventive maintenance and reducing downtime.
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Recommendation Systems

In recommendation systems, autoencoders, such as AutoRec, have shown promise by
compressing user-item interaction matrices into dense representations that capture user
preferences and item characteristics[4]. This approach has been applied in online retail
to suggest products to users based on their browsing and purchase history, signi�cantly
improving user engagement and sales. Similarly, in content streaming services, autoencoders
help recommend movies, TV shows, and music tailored to individual tastes, enhancing user
experience by providing personalized content recommendations.

Dimensionality Reduction

Autoencoders are a nonlinear alternative to PCA for dimensionality reduction, capable of
capturing complex data structures in a lower-dimensional space. This application is crucial
for dealing with high-dimensional data, such as images or text, and mitigating the curse of
dimensionality[4].
Each application leverages the unique ability of autoencoders to learn ef�cient representations
of data, whether for generating new samples, enhancing classi�cation and clustering, detecting
anomalies, making recommendations, or reducing dimensionality. These applications
underscore the versatility and utility of autoencoders in various machine learning and data
processing tasks.

2.10 Privacy

Privacy encompasses the protection of personal data from unauthorized access, disclosure,
or misuse, ensuring that individuals' con�dentiality and autonomy are respected. Data
privacy is a critical aspect of information technology and digital services, governed by laws
and regulations like the General Data Protection Regulation (GDPR) in the European Union,
which sets strict guidelines for data handling and grants individuals speci�c rights over their
data[32].

Data utility, on the other hand, refers to the usefulness or value that data provides, especially
when used for decision-making, analysis, and other processes. In the context of privacy, there
is often a balance or trade-off to be managed between protecting individuals' privacy and
maximizing the utility of data. For example, anonymizing data can protect privacy but may
reduce its utility for certain types of analysis. The challenge lies in implementing privacy-
preserving techniques that minimize the impact on data utility, such as differential privacy,
which adds noise to data in a way that protects individual privacy while still allowing for
meaningful analysis[32].

Regulatory Landscapes: GDPR and HIPAA

In the era of digital transformation, the protection of personal data has risen to the forefront
of global priorities. Two critical regulatory frameworks that guide data privacy and security
practices today are the General Data Protection Regulation (GDPR) in the European Union
and the Health Insurance Portability and Accountability Act (HIPAA) in the United States[1,
10, 32].

The General Data Protection Regulation (GDPR)

Adopted on April 14, 2016, and effective from May 25, 2018, the GDPR represents a
comprehensive data protection law in the EU. It aims to give individuals control over their
personal data while simplifying the regulatory environment for international business by
unifying the regulation within the EU. The GDPR impacts any organization, regardless of

33



location, that processes personal data of EU residents. It emphasizes principles such as consent
of the data subject, data minimization, and the right to erasure, also known as the right to
be forgotten. Violations of GDPR can lead to signi�cant �nes, up to   20 million or 4% of
the annual worldwide turnover of the preceding �nancial year, whichever is higher[10]. For
further information on GDPR, please refer to the of�cial website of the European Commission:
GDPR | European Commission.

The Health Insurance Portability and Accountability Act (HIPAA)

Enacted on August 21, 1996, HIPAA is a United States legislation that provides data privacy
and security provisions for safeguarding medical information. The primary goal of HIPAA is
to make it easier for people to keep health insurance, protect the con�dentiality and security
of healthcare information, and help the healthcare industry control administrative costs.
HIPAA applies to covered entities and their business associates that handle protected health
information (PHI). It establishes national standards for the protection of health information,
as well as civil and criminal penalties for violations[1]. For more insights into HIPAA, visit
the of�cial U.S. Department of Health & Human Services website: HIPAA for Professionals |
HHS.gov.

Implications for Data Privacy and Synthetic Data Generation

The advent of synthetic data generation offers promising avenues for leveraging extensive
datasets while adhering to GDPR and HIPAA requirements. However, ensuring that
synthetic data generation processes and the resultant datasets comply with these regulations
is paramount. The use of tools like Anonymeter to assess privacy risks in synthetic datasets
emerges as a crucial step in aligning synthetic data initiatives with GDPR and HIPAA, ensuring
that the bene�ts of synthetic data are harnessed responsibly and ethically[1].

2.10.1 Understanding Anonymeter: A Comprehensive Tool for Privacy Risk
Assessment in Synthetic Datasets

In the quest for balancing data utility and privacy, synthetic datasets have emerged as a
promising solution, enabling the exploration and analysis of data while preserving individual
privacy. However, the generation of synthetic data introduces its own set of challenges,
particularly concerning the assessment and mitigation of privacy risks. This is where
Anonymeter, developed by Anonos, becomes indispensable[22].

The Essence of Anonymeter

Anonymeter serves as an advanced tool designed to scrutinize privacy risks in synthetic
datasets meticulously. Recognized by CNIL, France's data protection authority, for its
capabilities, Anonymeter plays a crucial role in ensuring synthetic datasets are effectively
anonymized, addressing both anonymization and pseudonymization concerns[22].

Operational Mechanics

Anonymeter stands out by evaluating synthetic datasets through the simulation of various
privacy attacks, focusing on the potential for re-identi�cation. It operationalizes this by[22]:

• The Attack Phase: Making educated guesses about individual records within a synthetic
dataset.

• The Evaluation Phase: Comparing these educated guesses against the original dataset
to ascertain the accuracy of the privacy attacks.
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• The Risk Estimation Phase: Determining the actual privacy risks by conducting the
attack on a control dataset not involved in the synthetic data's generation.

Key Attributes of Anonymeter

• Comprehensive Risk Evaluation: Anonymeter assesses risks pertaining to singling out,
linkability, and inference, offering a detailed perspective on privacy concerns.

• Balancing Utility and Privacy: It provides insights into the trade-offs between the
informational value of synthetic data and its privacy implications.

• Ease of Use:Anonymeter is designed with user accessibility in mind, requiring minimal
technical expertise to implement.

Anonymeter's methodology encompasses several key components, each targeting a speci�c
aspect of privacy risk[22]:

1. Singling-Out Risk Assessment: This component evaluates the risk associated with the
possibility of identifying an individual from a dataset. It includes:

• Univariate Analysis:Assesses the risk of identi�cation from a single attribute.

• Multivariate Analysis: Evaluates the risk when multiple attributes are combined,
providing a more nuanced analysis of privacy risk.

2. Linkability Risk Assessment: Measures the risk that two or more records from different
datasets can be linked to the same individual, potentially revealing sensitive information.

3. Inference Risk Assessment: Assesses the likelihood that sensitive information can be
inferred from an anonymized or synthetic dataset, emphasizing the need for robust
anonymization techniques.

Practical Application

For organizations aiming to navigate the complexities of data privacy while leveraging the
bene�ts of synthetic datasets, Anonymeter offers a direct and ef�cient solution. This tool
simpli�es the privacy risk assessment process, making it accessible for a broad range of users,
from data scientists to privacy professionals.

1. Installation and Setup: The �rst step in utilizing Anonymeter involves accessing its
source code on GitHub. Here, users can �nd comprehensive instructions for cloning the
repository and setting up the environment required to run Anonymeter. This process is
designed to be straightforward, ensuring that even those with limited technical expertise
can successfully install and begin using the tool.

2. Con�guration: After installation, the next critical step is the con�guration of Anony-
meter to suit speci�c evaluation needs. This phase involves de�ning the auxiliary in-
formation that is known outside of the dataset and specifying the target attributes for
privacy risk evaluation. Such con�guration allows Anonymeter to simulate realistic at-
tack scenarios, accurately measuring the potential risks of re-identi�cation or informa-
tion inference. Through this targeted approach, Anonymeter can provide insights into
the speci�c areas of vulnerability within synthetic datasets, guiding users in implement-
ing effective mitigation strategies.

For those interested in integrating Anonymeter into their synthetic data pipeline, detailed
documentation and the necessary resources can be found at the Anonymeter GitHub
repository: https://github.com/statice/anonymeter. This GitHub page serves as a hub
for all information related to Anonymeter, including updates, user guides, and community
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support. By offering open access to the tool, Anonos encourages ongoing collaboration and
development within the privacy technology community, ensuring that Anonymeter remains a
cutting-edge solution for privacy risk assessment in the evolving landscape of synthetic data.

Why Choose Anonymeter?

Anonymeter's development as an open-source tool underlines Anonos's commitment to
enhancing privacy technologies' accessibility. It is crafted to be adaptable, ensuring it remains
relevant amid evolving privacy regulations and research advancements. The Anonymeter
framework plays a pivotal role in the �eld of synthetic data by providing a structured
approach to evaluate and mitigate privacy risks. By assessing singling-out, linkability, and
inference risks, Anonymeter helps researchers and practitioners balance the trade-offs between
maintaining data utility and ensuring privacy. This is particularly relevant in the era of big data
and machine learning, where the use of synthetic data is becoming increasingly prevalent.

Looking Ahead

Anonos envisions expanding Anonymeter's functionalities to include new privacy metrics
and support for various data types and de-identi�cation methods. This forward-looking
approach ensures Anonymeter remains at the forefront of privacy protection technology,
aiding organizations in navigating the complex landscape of synthetic data privacy with
con�dence.

Reference to Anonymeter

For further details on Anonymeter and its methodology, readers are referred to the of�cial
documentation and publications by the creators of Anonymeter. This source provides
comprehensive insights into the framework's development, application, and impact on
privacy-preserving data analysis.

Note: For speci�c details and technical descriptions of the Anonymeter framework, please refer to the
work of Elise Devaux [22].

2.10.2 Autoencoders (AE) and Data Privacy Preservation

Autoencoders operate by compressing input data into a lower-dimensional representation
(latent space) and subsequently reconstructing the original data from this compressed form.
This process is pivotal for privacy preservation for several reasons. Firstly, the encoding phase
abstracts away from the speci�cs of individual data points, focusing instead on capturing
the underlying distribution and patterns within the dataset. By learning a generalized
representation, AEs ensure that the synthetic data generated does not replicate any speci�c
individual's data. Instead, the reconstructed data re�ects the aggregate characteristics of the
input data, thereby safeguarding individual privacy.

2.10.3 Variational Autoencoders (VAE) and Enhanced Data Privacy

Variational Autoencoders take the privacy-preserving capabilities of AEs further by introdu-
cing a probabilistic twist to the encoding and decoding process. VAEs generate a latent space
that is not just a compressed representation but a probabilistic distribution of possible repres-
entations. The key component here is the sampling layer, which introduces randomness into
the generation of the latent variables. This randomness means that any synthetic data point
generated by a VAE is essentially a sample from the learned distribution, further distancing
the synthetic instance from any real individual's data. The probabilistic nature of VAEs inher-
ently embeds a layer of uncertainty, making it signi�cantly more challenging to trace back to
any speci�c real-world data point, thus enhancing privacy.
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2.10.4 The Privacy-Preserving Mechanism in AE and VAE

The privacy-preserving aspect of AE and VAE models is not an add-on but a fundamental
characteristic of how these models operate. By learning to encode the data into a new space
(latent space for AE and probabilistic latent space for VAE) and then decoding it to generate
new data points, these models ensure that the output re�ects the collective features of the
dataset rather than any individual's data. This methodology inherently protects patient data
privacy and individual data con�dentiality by design. The generated synthetic data maintains
the utility for research and development purposes, such as training machine learning models
or conducting statistical analyses, without compromising the privacy of the individuals whose
data were used to train the generative models.

The application of AE and VAE for synthetic data generation inherently employs data privacy
techniques through their operational mechanisms. The process of encoding, transforming,
and decoding the data in AEs, coupled with the probabilistic generation in VAEs, ensures that
synthetic data generation is naturally aligned with privacy preservation goals. This inherent
privacy-preserving feature makes AE and VAE powerful tools for generating synthetic
datasets that are both useful and respectful of individual privacy, offering a robust approach to
handling sensitive data in healthcare and beyond. The approaches of leveraging AE and VAE
are generally referred to as differential privacy when speci�cally designed to minimize the risk
of re-identi�cation, or more broadly, it can be considered as part of synthetic data generation
techniques for privacy preservation.

2.11 Related Works

In the context of synthetic data generation, [51] study highlights the application of GANs
for creating synthetic census microdata, revealing the complexities and risks of using GANs,
especially for mixed-type data like healthcare records. This work underscores the need for
integrating Autoencoders (AEs) and Variational Autoencoders (VAEs), subsets of GANs to
tackle these challenges effectively.

Building on this, [62] research, "Exploring the Value of GANs for Synthetic Tabular Data
Generation in Healthcare with a Focus on Data Quality, Augmentation, and Privacy," delves
into the potential of GANs to mimic the complexity of real healthcare datasets while
safeguarding privacy. Pedersen's �ndings, particularly with CTGAN and CopulaGAN
models, resonate with the thesis's aim to enhance synthetic data's security and utility.

In the paper "Generation and Evaluation of Tabular Data in Different Domains Using GANs"
[54], the authors explore the capabilities of Generative Adversarial Networks (GANs) in
creating and assessing structured, high-dimensional tabular data across a variety of �elds. This
research highlights the �exibility of GANs in generating synthetic datasets that closely mimic
real data, suggesting the integration of Autoencoders (AEs) and Variational Autoencoders
(VAEs) to enhance data security and privacy.

The study presented in [47] introduces an innovative method that incorporates expert
knowledge into the synthetic data generation process. By addressing common challenges
such as bias and over�tting in GAN models, this approach demonstrates its alignment with the
goals of this thesis, particularly in the context of generating more accurate and secure synthetic
data for healthcare applications.

In the notable study, by Stadler, Oprisanu, and Troncoso (2022) critically evaluate the
effectiveness of synthetic data as a means to preserve privacy in the context of data publishing.
Their work, presented at the 31st USENIX Security Symposium, addresses a fundamental
question in the �eld of data privacy: Can synthetic data, generated from state-of-the-art
generative models, adequately protect against inference attacks while maintaining data utility?
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[74]

Their research, titled "Synthetic Data – Anonymisation Groundhog Day," challenges the
prevailing notion that synthetic data offers a foolproof solution to privacy concerns associated
with traditional anonymisation techniques. The authors provide a quantitative assessment
that demonstrates synthetic data often fails to offer a better balance between privacy protection
and data utility compared to traditional methods. This �nding is signi�cant as it empirically
contests the idea that synthetic data can serve as a silver bullet for privacy-preserving data
publishing [74].

Stadler, Oprisanu, and Troncoso's study reveals that the privacy-utility tradeoff in synthetic
data publishing is unpredictably variable. They argue that unlike traditional anonymisation,
where the effects and limitations are somewhat predictable, synthetic data does not consist-
ently guarantee that all sensitive information is masked or that the statistical properties of the
original data are preserved. This unpredictability can lead to signi�cant variations in privacy
gains and unforeseen losses in utility [74].

The implications of their �ndings are critical for researchers and practitioners in data privacy,
as it underscores the necessity of a cautious approach to using synthetic data. Their work
suggests that relying solely on synthetic data for privacy preservation could be misguided
without thorough validation and understanding of the generative models' capabilities and
limitations[74].

Utilization of Autoencoders and Variational Autoencoders in Healthcare and Other
Domains' Tabular Data

In the rapidly evolving �eld of healthcare, the advent of machine learning technologies
has opened new avenues for enhancing patient care, diagnosis, and treatment processes.
Among these technologies, autoencoders have emerged as a powerful tool for dealing with
complex healthcare data. Autoencoders, through their unique ability to learn ef�cient
representations and features from vast amounts of unlabelled data, have found applications
ranging from anomaly detection in patient records to the generation of synthetic data for
research purposes. This subsection of chapter 2 demonstrates the diverse applications of
autoencoders in healthcare, highlighting their potential to transform medical data analysis,
enhance privacy and security, and contribute to the advancement of personalized medicine. By
exploring various studies and implementations, we aim to provide a comprehensive overview
of how autoencoders are being utilized to address some of the most pressing challenges in
healthcare today.

Synthetic Electronic Health Records Generated with Variational Graph Autoen-
coders

Nikolentzos et al.'s (2023), "Synthetic electronic health records generated with variational
graph autoencoders," introduces an innovative method for creating synthetic patient trajector-
ies from electronic health records (EHRs), aiming to overcome privacy concerns in healthcare
data usage. Leveraging Variational Graph Autoencoders (VGAEs), the research showcases
the ability to generate synthetic data that is both clinically realistic and privacy-compliant, ef-
fectively capturing the intricate time-dependencies and correlations found in patient data[57].
This approach not only ensures the generation of large, complex graphs that mirror the stat-
istical characteristics of actual health records without risking patient privacy but also marks a
signi�cant step forward in enabling the secure sharing and utilization of healthcare data. By
providing a novel solution to the data accessibility challenge in healthcare, Nikolentzos et al.'s
work holds the potential to signi�cantly advance medical research and the implementation of
AI technologies in healthcare settings, all while adhering to strict privacy standards.
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Synthesising Multi-Modal Minority Samples for Tabular Data

The paper "Synthesising Multi-Modal Minority Samples for Tabular Data" by Sajad Darabi
and Yotam Elor introduces a novel framework, Tabular AutoEncoder Interpolator (TAEI),
aimed at addressing the challenge of imbalanced binary classi�cation in machine learning,
particularly for tabular datasets that include both continuous and categorical (discrete)
features. Recognizing the limitations of traditional oversampling methods like SMOTE in
handling multi-modal data, the authors propose leveraging autoencoders to map samples
into a dense continuous latent space, where interpolation can effectively generate high-
quality synthetic minority samples. This process not only enhances the representation of
minority classes but also signi�cantly improves the prediction accuracy in downstream binary
classi�cation tasks[20]. Through extensive experimentation across 27 real-world datasets, the
framework demonstrated superior performance in generating synthetic data, outperforming
existing methods including GAN-based approaches like CTGAN and TGAN. The study
introduces new metrics for directly assessing the quality of generated data, underscoring
the framework's ability to produce realistic synthetic samples and its potential for broad
application in machine learning models dealing with imbalanced data.

EVA: Generating Longitudinal Electronic Health Records Using Conditional Vari-
ational Autoencoders

In the paper "Generating Longitudinal Electronic Health Records Using Conditional Vari-
ational Autoencoders" by Siddharth Biswal et al. introduces EVA, a deep generative model
designed to synthesize realistic sequences of Electronic Health Records (EHR) encounters, ad-
dressing the critical need for large, realistic EHR datasets for healthcare research while ensur-
ing patient privacy. Leveraging a combination of stochastic gradient Markov Chain Monte
Carlo and amortized variational inference, EVA ef�ciently generates EHR sequences that re-
�ect individual patient differences and can be conditioned on speci�c disease conditions, en-
abling targeted disease-speci�c studies. Evaluated on extensive real-world EHR data from
over 250,000 patients, the model demonstrates its ability to produce sequences that clinicians
�nd realistic, with predictive models trained on synthetic data performing comparably to those
trained on actual EHRs[6]. Furthermore, augmenting real data with synthetic EHRs generated
by EVA improves predictive performance, showcasing EVA's potential to signi�cantly advance
healthcare research while safeguarding patient privacy.

Transfer Learning for Tabular Data

In the paper "Transfer Learning for Tabular Data" by Leonid Joffe, a novel deep learning
architecture is introduced, aiming to overcome the limitations of traditional models that are
con�ned to speci�c table formats in tabular data [39]. This architecture, inspired by the
universal applicability of computer vision models, is designed to capture useful patterns
across arbitrary tables by training on randomly sampled subsets of features processed by
a convolutional network. This approach enables the model to learn feature interactions
within the table, producing embeddings that are transferable and enhance the performance
of classi�ers across various machine learning benchmark datasets. The paper demonstrates
that these embeddings, when used as additional features, signi�cantly improve classi�cation
accuracy, suggesting the potential of transfer learning in the realm of tabular data. This
research opens new avenues for applying deep learning to tabular datasets, where the model's
ability to abstract and generalize from feature interactions can lead to more versatile and
effective machine learning applications.
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Advancements in Biomedical Machine Learning

Recent advancements in machine learning, particularly through the application of autoen-
coders (AEs) and variational autoencoders (VAEs), have shown promising results in the bio-
medical �eld, offering novel approaches to the diagnosis of rare diseases (RDs) and the hand-
ling of complex omics data. Pratella et al. provide a comprehensive overview of how these
unsupervised learning models are being utilized to enhance the understanding and diagnostic
processes of RDs, leveraging the vast and intricate datasets generated by high-throughput se-
quencing technologies. These technologies, including AEs and VAEs, have emerged as power-
ful tools for deciphering the complex, high-dimensional data characteristic of modern bio-
medical research. By compressing data into a more manageable latent space, AEs and VAEs
facilitate the extraction of meaningful patterns and features that are often obscured in raw data-
sets, demonstrating their potential to provide insights into cancer, bacterial infections, and the
physiological states of healthy tissues[65]. The principles underlying the application of AEs
and VAEs in RD diagnosis and omics data analysis bear signi�cant relevance to the challenges
of securing synthetic healthcare data. In generating synthetic datasets that maintain the statist-
ical properties of original data while ensuring privacy, the ability of AEs and VAEs to capture
and encode essential data characteristics becomes invaluable. This process mirrors the com-
pression and reconstruction mechanism of AEs, where sensitive data elements are abstracted
into a latent representation, effectively obfuscating individual data points to protect patient
privacy. Moreover, the adaptability of AEs and VAEs to handle various data complexities and
their application in denoising and data integration offer important lessons for enhancing data
security. By applying these models to generate synthetic healthcare data, researchers can en-
sure that the resulting datasets are not only diverse and representative but also devoid of direct
identi�ers, thereby mitigating the risk of re-identi�cation.

Advancements in Personalized Cancer Treatment through Machine Learning

According to Hongyuan Dong et al. (2021), the development of personalized cancer treatment
strategies and the discovery of new anti-cancer drugs are signi�cantly enhanced by leveraging
Variational Autoencoders (VAEs) and Multi-Layer Perceptrons (MLPs). Their innovative
approach, which combines gene expression data from cancer cell lines with molecular data
of anti-cancer drugs, utilizes a novel GENEVAE model for gene expression data and a recti�ed
Junction Tree Variational Autoencoder (JTVAE) for drug molecular data. This methodology
not only facilitates the prediction of drug responses with remarkable accuracy, as evidenced
by high R2 scores, but also demonstrates the potential for generating novel drug compounds
effective against speci�c cancer cell lines. Their work marks a signi�cant advancement
in the application of machine learning techniques in oncology, offering promising avenues
for accelerating the discovery of effective cancer treatments and advancing personalized
medicine[24].

Comparative Analysis of Computational Models in Oncology

In exploring the ef�cacy of various computational models in predicting anti-cancer drug
responses, Dong et al. (2021) presents a comprehensive comparison of six models combining
gene expression data and drug molecular structures with different analytical approaches
[24]. The performance of these models on both breast cancer and pan-cancer datasets
is summarized, showcasing the predictive accuracy through R 2 scores and RMSE metrics.
The results underscore the superior performance of models that integrate Variational
Autoencoders (VAEs) with Multi-Layer Perceptrons (MLPs), particularly when applied to a
broad spectrum of cancer types.
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Comparative Performance of Predictive Models in Oncology

Table 1 below illustrates the signi�cant impact of incorporating Variational Autoencoders
(VAEs) into predictive models. Notably, the CGC + VAE + MLP model achieves the highest R 2

scores, indicating strong predictive accuracy across both breast and pan-cancer datasets. This
evidence supports the potential of VAE-enhanced models in improving the precision of drug
response predictions, thereby contributing to the development of more effective, personalized
cancer treatments.

Table 2.2: Performance of the 6 proposed models on breast and pan cancer datasets

Models Cancer Type R2 Score RMSE

CGC + SVR Breast 0.658 1.582
CGC + VAE + SVR Breast 0.692 1.491
CGC + MLP Breast 0.822 1.133
RAW + VAE + MLP Breast 0.805 1.163
CGC + VAE + MLP Breast 0.830 1.130
CGC + VAE + MLP Pan cancer 0.845 1.080

Source: Adapted from Dong et al. (2021).

Causal Recurrent Variational Autoencoder for Medical Time Series Generation

In the paper "Causal Recurrent Variational Autoencoder for Medical Time Series Generation"by
Hongming Li, Shujian Yu, and Jose Principe, the authors introduce the Causal Recurrent Vari-
ational Autoencoder (CR-VAE), a novel generative model designed to learn and incorporate
Granger causality into the generation of multivariate time series data. Unlike traditional mod-
els, CR-VAE features a multi-head decoder to handle the generation of each time series di-
mension while learning a sparse adjacency matrix that encodes causal relationships, ensuring
the data generation process adheres to the principles of Granger causality[49]. The model's
effectiveness is demonstrated through experiments on synthetic data and real-world medical
datasets, including EEG and fMRI signals, where it outperforms state-of-the-art time series
generative models in both the quality of synthetic data generation and the accuracy of causal
discovery. This advancement highlights CR-VAE's potential to enhance transparency in the
generative process and its applicability in medical and healthcare domains where understand-
ing causal relationships is crucial.

Innovative Drug Discovery Against COVID-19

In the face of the global COVID-19 pandemic, the innovative work by Cheng et al.
(2021) introduces the Genetic Constrained Graph Variational Autoencoder (GCGVAE), a
groundbreaking model designed for the rapid discovery of therapeutic drugs against SARS-
CoV-2. Trained on protein structure data from a variety of viruses, including SARS, HIV,
Hep3, and MERS, the GCGVAE model employs advanced optimization algorithms such
as valency masking and genetic algorithms to �ne-tune the generation of potential drug
moleculescheng2021genetic[13]. This approach not only accelerates the identi�cation of viable
drug candidates but also ensures the structural feasibility of these molecules, showcasing the
model's ability to produce compounds with high binding af�nity to the viral protease of SARS-
CoV-2. The simulation results presented by Cheng et al. demonstrate that the molecules
generated by GCGVAE signi�cantly outperform existing drugs in terms of effectiveness,
underscoring the model's potential to contribute meaningfully to the �ght against COVID-19.
Moreover, the GCGVAE model's versatility extends beyond COVID-19, offering a promising
framework for drug discovery against other viral pathogens. By automating the selection of
active molecules from extensive databases and generating structurally viable drug candidates,
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the model addresses critical challenges in the drug development process, reducing both time
and cost. Cheng et al.'s work exempli�es the power of computational models in pandemic
response efforts, providing a scalable and ef�cient solution for the rapid development of
therapeutic agents. The success of the GCGVAE model in generating superior drug candidates
for COVID-19 treatment highlights its potential as a transformative tool in the �eld of drug
discovery, paving the way for its application in addressing future global health crises[13].

Exploring Factor Structures with VAEs in Personality Research

Huang and Zhang (2022), in their pioneering study, leverage the Variational Autoencoder
(VAE) to explore factor structures within personality research, challenging the traditional
Linear Factor Analysis (LFA) approach. Through meticulous analysis of the International
Personality Item Pool (IPIP) Big 5 and HEXACO datasets, the authors demonstrate VAE's
superior capability in identifying stable factor structures, even as the number of assumed
latent factors increases. Unlike LFA, which tends to fractionate factors into smaller, unstable
components, VAE consistently identi�es a more nuanced factor structure, suggesting its
potential to exhaustively explore factor structures in a single process. This study not only
highlights VAE's effectiveness in handling complex, non-linear associations between latent
factors and personality variables but also underscores its limitations, such as the need for large
sample sizes to ensure model convergence. Huang and Zhang's work opens new avenues
for personality model construction, emphasizing the importance of incorporating non-linear
analytical tools like VAE in psychological research[37].

PepVAE: A VAE Framework for Antimicrobial Peptide Generation

In the innovative study "PepVAE: Variational Autoencoder Framework for Antimicrobial
Peptide Generation and Activity Prediction" by Dean et al. (2021), the authors introduce
a groundbreaking approach to antimicrobial peptide (AMP) discovery using a variational
autoencoder (VAE). This framework, PepVAE, is adept at generating novel AMP sequences
and predicting their antimicrobial activity solely based on sequence and experimental data.
By encoding AMP sequences into a latent space, PepVAE facilitates the generation of new
AMPs with desired properties through controlled sampling from speci�c latent space regions.
The study's validation process, involving experimental minimum inhibitory concentration
(MIC) assays against pathogens like E. coli, S. aureus, and P. aeruginosa, con�rms the ef�cacy
of the generated AMPs. This method represents a signi�cant leap forward in the quest for
new antimicrobials, offering a rapid, ef�cient, and low-cost tool for developing peptides with
potent bactericidal activities, thereby addressing the urgent need for novel antimicrobials in
the post-antibiotic era[21].

ECAAE: Accelerating Drug Discovery with Generative Architecture

Polykovskiy et al. (2021) introduced an innovative generative architecture, the Entangled
Conditional Adversarial Autoencoder (ECAAE), aimed at accelerating the drug discovery
process through computational means. This model can generate novel molecular structures
with speci�ed properties, such as activity against proteins, solubility, or synthetic feasibility.
The authors applied ECAAE to generate a novel inhibitor targeting Janus kinase 3, a
protein implicated in various autoimmune diseases, demonstrating the molecule's ef�cacy
through in vitro testing[64]. This work underscores the potential of generative models to
signi�cantly reduce the time and cost associated with traditional drug discovery methods,
offering a promising avenue for rapid development of therapeutic agents. The ECAAE model
addresses disentanglement issues present in previous models by incorporating predictive
and joint approaches, ensuring the conditional generation of complex molecular structures.
Furthermore, the model's semi-supervised extension allows for the utilization of partially
labeled datasets, enhancing its applicability in real-world scenarios where complete property
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datasets are rare[64]. This advancement in generative modeling represents a signi�cant step
forward in the use of machine learning techniques for drug discovery, providing a versatile
tool for generating compounds with desired properties and potentially transforming the
pharmaceutical development landscape.

Demystifying VAEs in Synthetic Financial Data Generation

Wu et al. in their 2023 study, introduce a sensitivity-based approach to demystify the process
by which Variational Autoencoders (VAEs) generate synthetic �nancial data. This method
illuminates the "black box" nature of VAEs, offering insights into how speci�c input features
affect the model's latent space and, consequently, the synthetic data produced. Tested on
both simulated and real banking datasets from Kaggle, the research showcases the technique's
ability to clarify and quantify the role of input features in synthetic data creation, enhancing
transparency and ef�ciency in �nancial applications where data privacy is critical[81]. The
study's �ndings are not limited to �nance; they hold promise for sectors like healthcare and
education, where generating privacy-compliant synthetic data is essential[81]. By identifying
key features that in�uence data generation, the sensitivity-based method improves model
ef�ciency and fosters a deeper understanding of deep learning models' inner workings.
Wu et al.'s work contributes signi�cantly to the �eld of explainable AI, advocating for
greater transparency and trust in machine learning and highlighting the potential for broader
application of such interpretative techniques in sensitive and regulated environments.

Medical Image Compression Based on Variational Autoencoder

In the study "Medical Image Compression Based on Variational Autoencoder" by Liu et
al., a novel approach to medical image compression is introduced, utilizing variational
autoencoders (VAEs) combined with residual network modules. This method addresses
the challenge of ef�ciently compressing medical images amidst the "explosive" growth of
medical data, constrained by limited network bandwidth and storage capacity. The algorithm
optimizes both the compression rate and the distortion of reconstruction simultaneously,
surpassing traditional compression techniques that struggle with dual optimization. By
incorporating residual networks, the algorithm effectively minimizes information loss during
compression, ensuring the preservation of critical medical details. Experimental results
demonstrate superior performance in terms of lower distortion and better reconstruction
effects compared to existing medical image compression algorithms, maintaining high-quality
image reconstruction across various compression rates[53]. This advancement is signi�cant
for enhancing the storage and transmission ef�ciency of medical images, supporting the
increasing demands of medical diagnostics and research.
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Chapter 3

Methodology

This Chapter stands as the heart of this exploration, meticulously detailing the methodology
that underpins our journey through the realms of synthetic data generation and evaluation.
Within these pages, we embark on a deep dive into the innovative generative methodolo-
gies(autoencoder and variational autoencoder) that have been harnessed to create synthetic
datasets that mirror the complexity and nuance of real-world data. Our narrative does not
stop at creation; it extends into the rigorous assessment of the synthetic data's �delity to its
origins, employing a blend of established and novel evaluation metrics and privacy risk as-
sessment leveraging Anonymeter.

The choice of Python version 3.8 as the scaffolding for this thesis is both a nod to practicality
and a testament to the language's robust ecosystem. Python's widespread adoption and its rich
repository of libraries have made it an indispensable tool in the data scientist's arsenal. The
implementation of our generative methodologies, the orchestration of evaluation metrics, and
the utilization of Anonymeter have all been meticulously documented and executed within
this versatile programming environment.

As we navigate through the chapter, readers will gain insights into the meticulous processes
involved in generating synthetic datasets, from conceptualization to realization. The
methodologies, AE, and VAE detailed here are not merely academic exercises; they are
practical tools re�ned and validated through empirical research. The datasets that emerge from
these processes are then subjected to a rigorous evaluation, with the �ndings meticulously
documented and made accessible for further inquiry. For a detailed methodologies, AE, and
VAE look at the code and implementations used throughout these methodologies, visit our:
GitHub Repository.

This chapter is not just a narrative of methods, metrics, and experimental designs; it is an
invitation to explore the frontier of synthetic data generation and data privacy risk assessment
techniques. It lays down the groundwork for a discourse that challenges conventional notions
of data privacy and utility, inviting readers, researchers, and practitioners alike to engage with
the material in a manner that is both critical and curious.

As you step into this chapter, be prepared to journey through the intricacies of synthetic data
generation and evaluation, guided by the principles of transparency, rigor, and innovation.
Welcome to the methodology of our thesis, where the foundation of our research is laid bare,
ready to be built upon by inquisitive minds eager to push the boundaries of what is possible
in the realm of synthetic data.

3.1 Dataset Description

In this study, three healthcare datasets were analyzed, each addressing a distinct health
condition: Obesity, Lower Back Pain, and Cardiovascular Disease. These datasets, sourced
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Table 3.1: Overview of Used Libraries (all web links accessed from January to April 2024).

Lib Website Description.
sklearn https://scikit-learn.org Predictive data analysis
pandas https://pandas.pydata.org Data manipulation
numpy https://numpy.org Scienti�c computing
matplotlib https://matplotlib.org Visualization
seaborn https://seaborn.pydata.org Data visualization
TensorFlow https://www.tensor�ow.org ML platform
Keras https://keras.io/api/backend/ Deep learning API
Imblearn https://imbalanced-learn.org Imbalanced data

from Kaggle.com, are well-regarded in healthcare research for their comprehensive data on
patient demographics, health indicators, and clinical outcomes.

3.1.1 Obesity Dataset

Encompasses variables that shed light on dietary habits, physical activity levels, and
genetic predispositions affecting obesity. This dataset is instrumental in understanding the
multifaceted nature of obesity. It incorporates data on individuals' eating habits and physical
conditions. With 2,111 entries and 17 features—spanning both numerical and categorical
types—it offers a broad perspective on obesity-contributing factors. The dataset categorizes
individuals into various obesity levels, from Insuf�cient Weight to Obesity Type III, making it
suitable for multi-class classi�cation tasks. Its size, larger than the Lower Back Pain dataset,
presents a unique advantage for enhancing classi�cation task performance. Furthermore, it
allows for the examination of synthetic data generation techniques across a spectrum of feature
types and more intricate classi�cation challenges. For more information and data access, visit
Kaggle: Obesity Prediction Dataset Link

Figure 3.1: Obesity Prediction Dataset and Structure
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3.1.2 Lower Back Pain Dataset

Features biomechanical attributes derived from orthopedic measurements. It is pivotal in
identifying biomechanical factors contributing to lower back pain. This dataset is notable
for its compact size, encompassing just 310 instances across 13 variables. It presents a
unique blend of features, predominantly numerical, with a singular binary class label aimed
at facilitating predictive analyses. This collection is meticulously curated to encapsulate a
variety of factors implicated in lower back pain or lumbago, spanning a broad spectrum
from muscular and ligament strains to nerve compression and skeletal irregularities within
the lumbar region. It aims to aid in the identi�cation of unusual biomechanical patterns
that could potentially signal the onset of lumbago. Given its concise dataset size, it emerges
as an exemplary model for testing the ef�cacy of synthetic data augmentation in enhancing
analytical performance. Moreover, its class imbalance mirrors a prevalent issue within
healthcare datasets, thereby reinforcing its relevance to this research's objectives. For access
to the dataset, visit Kaggle: Lower Back Pain Symptoms Dataset Link.

Figure 3.2: Lower Back Pain Symptoms Dataset and Structure

Table 3.2: Summary of Datasets Used in the Study

Dataset Name Total Records Numerical Features Categorical Features Total Features
Lower Back Pain Symptoms 310 12 1 13
Estimation of Obesity Levels 2,111 8 9 17
Cardiovascular Disease 70,000 5 6 11

3.1.3 Cardiovascular Disease Dataset

Comprises clinical parameters, such as blood pressure and cholesterol levels, alongside
lifestyle factors, offering insights into the prevalence and predictors of cardiovascular diseases.
Available on Kaggle, this dataset stands out due to its extensive volume, featuring 70,000
entries adorned with both objective and subjective data across 11 variables, blending medical
�ndings with patient-reported information. With a mix of 5 numerical and 6 categorical
attributes, it lays a robust foundation for predictive analyses concerning cardiovascular
diseases. Notably, it assumes a pivotal role in our study by acting as a comparative benchmark,
enabling an assessment of the ef�cacy of synthetic data generation across varying dataset
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