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ABSTRACT

State-of-the-art mechanically driven model of the anaerobic digestion process was
compared to data driven methodology of System Identification and Machine Learn-
ing.

Through collaboration with OsloMet, Veas WWTP and DHI was data col-
lected for analysis and to compose a dataset that DHIs West software could use
to run their mechanically driven simulation based on the ADM1 model.

Live data from the same plant was also collected to create a dataset where two
data driven models were created; one using System Identification methodology
and the other using Machine Learning. Both data driven models were attempted
for closed-loop integration with controllers.

DHIs model output tracked the actual output, showing similar behaviour to
the actual plant. The data driven models showed less stable behaviour, although
at times closer tracking to actual output than in West. Closed-loop integration
with PI-controller and MPC on the SI-model showed close setpoint tracking with
predictive inputs to the MV. Controller implementation on the ML-model showed
less stable behaviour and further development of controller tuning is needed.

Keywords: Renewable Energy, Wastewater Treatment, Biogas Pro-
duction, Anaerobic Digestion, Veas, DHI, West, Simulation, Control,
Machine Learning, Recurrent Neural Network, Long-Short Term Mem-
ory, System Identification
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CHAPTER

ONE

INTRODUCTION

According to International Water Association, wastewater treatment plants (WWTP)
consumes an estimated 1-3% of global energy output [1]. The European Com-
mission revised the Urban Waste Water Treatment Directive (UWWTD) in 26-
October-2022, "adapting it to the newest standards" and aims to "reduce pollu-
tion, energy use and greenhouse gas emissions" [2]. Capturing biogas energy from
WWTPs potentially supports all these goals.

Through organic processes, our waste can be exploited of its organic energy
potential through the natural degradation by microorganisms. Contained in an
anaerobic environment the activity the microorganism cultures’ degradation of
the organic material they get in contact with, can under the right circumstances
exhaust biogas that can be captured and used for electricity production, heating
or fuel.

At the wastewater treatment plant at Veas in Røyken, Norway, stripped sludge
captured from the wastewater purification process contains organic material that
gets pumped into large tanks, void of oxygen (anaerobic), containing microorgan-
ism cultures that breaks down the organic material and produces biogas. Sludge
from the anaerobic tanks (digesters) are also pumped out continuously as new
sludge is filled and is a source for fertilizer production for use in agriculture [3].

There are challenges to this technology, however. The different types of bacte-
ria cultures present in an anaerobic digester (AD) breaks down different molecules
and creates sub-product that can affect the activity of other bacteria cultures,
resulting in a multi-layer balance problem for the resulting biogas output. By
avoiding stagnation of the liquid, local concentration differences can be avoided,
but will also result in organic material being pumped out of the AD as the liquid
sludge approaches uniform content distribution. Any non-digested organic mate-
rial pumped out of the AD increases the difficulty of avoiding this being digested
outside of the controlled volume of the AD. If not controlled properly, any organic
activity outside of the controlled volumes can result in greenhouse gasses being
leaked into our atmosphere. Increasing the hold-up time, the time which the bac-
teria has to digest all organic material in the AD, will reduce the concentration of
non-digested organic material exiting the AD, but will also reduce the production

1



2 CHAPTER 1. INTRODUCTION

rate of biogas.

Other challenges of the AD-process are the observation and monitoring of the
tank states. The contained volume of the AD is highly corrosive and proposes a
health hazard to operators and sensors mounted inside would need regular mainte-
nance due to clogging, bio fouling and degradation. Monitoring of the inlet sludge
can be used to estimate the states of the AD, but the first-principles models de-
veloped are extensive and may require too many values to analyze continuously
for practical purposes.

1.1 Motivation
The aim of this thesis was to advance the exploration of methods in modelling for
the collaboration project between OsloMet and Veas, MaxBiogas. By analyzing
collected plant data and composing it to usable datasets, different modelling ap-
proaches were tried and compare to find possible limitations of the simulation and
control landscape.

1.2 Research questions
- How does modern Machine Learning methods and traditional System Identifica-
tion methods compare to a state-of-the-art mechanically driven model?
- Can controllers be implemented to regulate biogas production of a simulated AD
model within the operation limits of the plant specification?

1.3 Project description
In this project three different models were created using three different methods:
- West by DHI and the included AD model
- System Identification
- Recurrent Neural Network

Live data from Veas was extracted and in combination with lab analysis of
daily sludge samples resulted in the composition of two datasets. One dataset,
containing data from the lab analysis was created to fill the requirements for
running simulation of the AD model in West. The next dataset contained plant
data and was used to test how accurate data driven models can become using live
data measurements.



CHAPTER

TWO

THEORY

2.1 Anaerobic Digestion Process

Figure 2.1.1: Simplified scheme of interaction between subprocesses in anaerobic
digestion [4]

The anaerobic digestion process can be categorised as the sum of four subpro-
cesses: hydrolysis, acidogenesis, acetogenesis, and methanogenesis [4]. Illustrated
in fig. 2.1.1, hydrolysis is the first stage in the digestion process where carbohy-
drates, proteins and lipids are converted to amino acids, sugars and long chain
fatty acids. Acidogenesis is the second stage and can output intermediate volatile
fatty acids (VFA) including acetate, while acetogenesis, the third stage converts

3



4 CHAPTER 2. THEORY

the remaining products of hydrolysis, combined with intermediate acids from the
acidogenesis process and produces hydrogen and more acetate. The final stage
is methanogenesis where intermediate products like acetate and hydrogen is con-
verted to methane.
There is a balance between these subprocesses that need to be held at an optimal
equalibrium to maximize methane production. For instance, Acidogenesis is con-
cidered a faster working process [5], that can result in a buildup of acids where
VFA acidification has been reported being the cause of digester failure [6].

To maintain a stable balance between the subprocesses of AD, some consider-
ations can be made when designing and operating an AD plant:
- Loading rate, the amount of organics fed to a digester per day in continuous
digesters, can accelerate acidogenesis and lead to acidification and digester failure
if kept too high [7].
- Hydraulic Retention Time, the mean length of time that liquids remain in a
digester, is linked to Loading rate, but is found to have an optimal value of 15-30
days for mesophilic digestion [8].
- Temperature. Mesophilic (operation around 35◦C) is found to digest slower and
have a lower production yield, while thermophilic (operation around 55◦C) have a
higher heating cost. However, increased production rate leads to increased loading
rates while avoiding acidification [9].

2.2 ADM1 and West by DHI

The ADM1 (Anaerobic Digestion Model No. 1) is a mathematical model for
simulating the anaerobic digestion process. The ADM1 model was developed to
describe and predict the complex biochemical reactions that occur during anaer-
obic digestion. It considers various substrates, microorganisms, and intermediate
products involved in the process. The model accounts for factors such as pH, tem-
perature, and the concentrations of different compounds to simulate the dynamics
of anaerobic digestion accurately.

ADM1 has been applied in various fields, including wastewater treatment,
biogas production from organic waste, and environmental engineering. It helps
researchers, engineers, and policymakers understand and optimize anaerobic di-
gestion systems, leading to improved efficiency, energy recovery, and waste man-
agement strategies [10].

West, a software developed by DHI is a simulation tool for wastewater treat-
ment and includes an in-house developed AD model based on ADM1. The me-
chanically driven model simulates activity in ADM1 and calculates the states of
the substrates, microorganisms and intermediate products in the AD and can di-
rectly estimate biogas production output by feeding the model with data of the
influent. This method can be classified as a white-box model as the topology of
the real process is known and mimiced as done in First Principles Modelling.
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Figure 2.2.1: Conceptual drawing of ADM1 [10]

2.3 System Identification

Unlike for the AD model in West, System Identification does not use the white-box
method of First Principles Modelling by using differential equations to estimate
the response of the system. By using a data driven approach of using data from
inputs and outputs of the estimated process, response function based on ordi-
nary differential equations are chosen. To estimate the likeness of the resulting
response to the actual process output, the constants of that response function is
adjusted, using error minimization methods and performance metrics are saved
after reaching optimum. Choice of response function can be based on trial and
error or experience, so any understanding of the nature of the process to repli-
cate by the proposed model would be useful and makes the method more like a
grey-box approach.

2.4 Long-Short Term Memory

A Long-Short Term Memory node (LSTM) is a node used in recurrent neural net-
works. Unlike in simple neural network, like Multi-Layer Perceptron (MLP), these
nodes has multiple tuneable parameters. Through an internal layout illustrated in
figure 2.4.1, the LSTM has two "memory channels" moving horisontally through
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Figure 2.3.1: System Identification method

Figure 2.4.1: An LSTM node with layer height in vertical direction and layer
stack in horisontal direction.

the node. The values in these channels gets altered as a sample is passed through
the network, but is kept for the next sample. That way, unlike normal MLPs
the output of an input sample depends on the samples passed through the LSTM
beforehand. The properties and benefit of the top (long-term) and the bottom
(short-term) memory channels makes LSTM suitable for time series data, where
data is organized in a perticular order. Each path in the LSTM-node is scaled
in array dimension according to input layer height and layer height in the hidden
layers.

Creating a Recurrent Neural Network of LSTM-nodes to fit to input and output
of a process does not require any prior information of any differential equations or
responses of the process. The RNN topology, which defines the model design can
be created through trial and error and can in most cases be defined as a black-box
method.

2.5 Literature review
Previous work on prediction biogas production rates of anaerobic digesters have
been tested with many different methods of machine learning. It seems to be
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a popular method for the field, as scientific papers for prediction of AD using
machine learnig methods are in abundance, although using system identification
yielded unsuccessful. [11] got an R2 of 0.38 with an LSTM model on two years
of data, while increased this to 0.68 by incorporating dual-stage attention LSTM
to the network (DA-LSTM). They did, however have 16 variables were used as
inputs, which are alot of variables to correlate with the process output. This
article [12] was also a study on a biogas facility linked to a WWTP and had
the lowest amount of input variables, by eight. Although they did not use any
neural network that had any way of predicting trends in time series data, they did
compare complex machine learning models, like ANFIS-GP, they did try a regular
MLP and got results in the range of R2=<0.87-0.92> for the latter, indicating
that normal MLPs can predict well given the right variables.
It is noteable, observing the inputs of the neural networks created in many of the
articles that inputs to the models are measured states inside the AD[13][11][12][14].
It is apparent that one or more states from inside the AD volume like VFA values,
pH and alcalinity are observable for all projects. This can be the culprit of how
they achieved so accurate prediction for their models, but the number of observable
input variables could also play a factor.
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THREE

METHODS

3.1 Strategy
The strategy used for this project was to create two different datasets based on
data gathered from the biogas facility at Veas. When these were created, three
different models were configured, optimized and trained. One model was created
using West software, another using Machine Learning and LSTM nodes and the
last using System Identification. Lastly, controllers was implemented to regulate
the different simulation models. This enabled the possibility of optimizing the
simulated operation of the biogas plant based on desireable performance metrics,
such as biogas production rate and sludge used or total organic load.

Figure 3.1.1: Overview of the modelling strategies for comparison

The first dataset was created based on data from lab samples collected daily
during the month of July 2022. This dataset was created to feed the anaerobic
digester model in West with the required data for the model to run the simulation
for the collected data period. The second dataset created was solely based on
online data captured live during operation. This dataset was created to run with

9



10 CHAPTER 3. METHODS

the models created using System Identification and Machine Learning methods. To
compare the different models, the same date range was used to ensure comparable
performance metrics.

3.2 Plant Layout

The parts of the biogas plant at Veas relevant for this thesis are two buffer tanks,
a third intermediate buffer tank, four anaerobic digester tanks and three heat
exchangers.

3.2.1 Inlet

Figure 3.2.1: Simplified illustration of the sludge inlet layout with tags of data
parameters used in data collection. Pumps and parallel pipes are excluded in
illustration.

From the two primary buffer tanks, FOR1 and FOR2 (ref. fig.3.2.1), sludge
are pumped by two pumps in parallel for redundancy, and which tank is being
emptied can be determined by the valve position of Valve 1 and Valve 2 for tank
FOR1 and FOR2 respectively. Both volumetric flowrate (Flowrate 1) and per-
centage of total solids (Total Solids) for the sludge inlet are measured after these
pumps. To prevent excessive hydro static pressure to achieve adequate flowrate, a
intermediate tank with a second pair of pumps are used, but can also be bypassed
by a three-way valve. Since temperature readings of the inlet sludge consists of
three temperature measurements at the three different pipe paths, the valve po-
sitions of valve Valve 3, Valve 4 and Valve 5 will be used to determine which
temperature reading (Temp 1-3) will be used for every time stamp in the online
data collection. It is necessary to mention, however that Flowrate 1 and Total
Solids measurements does not necessarily coencide with the actual flow entering
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the anaerobic digesters when the flow gets redirected to the intermediate buffer
tank. Flowrate 2 can replace Flowrate 1 as it is located after the merging of the
flow paths, but the Total Solids measurement does not have a replacement for
this, and will be noted as a source of error or uncertainty.

3.2.2 Anaerobic digesters

Figure 3.2.2: Simplified illustration of the layout surrounding an anaerobic di-
gester tank. In all, there are four tanks working in parallel sharing three heat
exhangers.

Figure 3.2.2 illustrates the pipe layout of a single anaerobic digester with rel-
evant online measurement locations and valves used for identification of plant
operation and data collection.

There are four anaerobic digester tanks at Veas, identical in physical properties.
Each tank is controlled individually, but they all operate in a cyclic rotation
of operational modes to ensure a continuous flow of sludge into the anaerobic
digesters in a Round-Robin fashion. Each tank has an internal volume of 6000 m3

with one inlet pipe and one outlet pipe. The outlet pipe is used for empying of
the tank, recirculation of the sludge and heating of the sludge. Two temperature
sensors are connected to the outlet pipe and indicates the temperature of the
sludge in the respective tank. All four anaerobic digester tanks share the same
heat exchanger system consisting of three heat exchangers working in parallel.
Heat water is used as a heating medium of the sludge in the heat exchangers,
and a bypass valve in the heat water regulates the effect of the heat exchanger
by regulating the flowrate of heat water through the heat exchanger. The outlet
of the sludge through the heat exchanger converge with the sludge inlet and the
piping for sludge recirculation to one single inlet pipe into the digester tank. Inside
the tank there are two live measurements. Height level of the sludge in the tank
and the height of the foam created by sludge activity. The height level of the
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tank is connected to the outlet pump to regulate the sludge height during the
emptying phase. The biogas outlet is connected to a gas stirring system between
each two tanks where pumps pushes gas through pipes down into the sludge to
release any gas bubbles that may be stuck in the sludge and to potentially stir the
solid material that sinks to the bottom of the tank. The final useful measurement
in this part of the biogas plant is a flowrate signal of the biogas outlet flow.

3.3 Plant Operation

Plant operation of the four anaerobic digester tanks consists of six actions de-
scribed in table 3.3.1.

Table 3.3.1: Actions during normal operation of the biogas plant

Filling Pumping of new sludge
through the inlet pipe

Emptying Pumping of sludge from the
tank through the outlet pipe

Heating Pumping of sludge from the
tank through the heat
exchanger

Recirculation Pumping of sludge from the
outlet pipe to the inlet pipe

Gas stirring left Pumping of biogas into the
left side of the tank

Gas stirring right Pumping of biogas into the
right side of the tank

During normal operation of the biogas plant the tanks are regulated through
a scheduled set of phases with static time intervals where each phase includes one
or more of the aforementioned plant actions.
The first phase consists of filling and heating. The flowrate of the filling actions
are controlled based on the amount of sludge in the buffer tanks in the inlet, while
the flowrate of sludge through the heat exchanger is controlled to a fixed static
value. These two actions are combined to prevent too low temperature values for
sludge pumped into the tank through the pipe inlet that can affect the anaerobic
activity. When the first phase is completed, filling and heating stops and recircu-
lation starts. This second phase lasts twice as long as the first and third phase.
The last phase consists solely of emptying of the tank.
Gas stirring of the tanks are operated on a schedule independent of the other
actions. Tank 1 and Tank 2 as a pair operates on a gas stirring schedule similar
to tank pair 3 and 4, but with different time intervals. The schedule operates of
alternating of tank and then alternating side of the tank of where gas is being
pumped. So, for a tank pair gas is first pumped into the left side pipes of the first
tank before it switches to the other side. Then, the pumping of gas for stirring
switches to the other tank, starting with the left side, before it switches to the
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right side. When this cycle is completes it starts over from the top.

Figure 3.3.1: Plant operation schedule for all anaerobic tanks

Figure 3.3.1 illustrates all actions in a time scheduled plant operation. Note
that the filling action is always active in one of the four tanks to ensure a constant
flow from the buffer tanks. For each tank one of the actions of heating, recircula-
tion and emptying is active. And since these actions all require sludge passing the
temperature measurement in the tank outlet pipe, this temperature reading will
at all times measure a moving flow from the tank and therefore can represent the
tank temperature.

3.4 Data
Data used in this project came from two different sources. Data used for data
driven model creation were extracted using ABB’s Edge Insight and Linnea soft-
ware used by Veas. Combined they provide the user an plant wide interface to
observe plant states live and the tools to extract logged data for every measured
parameter for different intervals. Data for the West simulation software came
from online data from the Linnea software, but also lab analysis of daily sludge
samples done to determine the composition of the sludge in the buffer tanks and
the bioreactor tanks.
The strategy was to extract all online data relevant to the biogas reactor con-
sidered as either disturbance variables, state variables, manipulated variables or
output variables. Then this data was to be analyzed to find important changes in
operation, observe the nature of noise and outliers for data manipulation and to
compare parameters against each other to find the parameters that mostly affect
the reactor output.

3.4.1 Data collection

Data was extracted 13:30:00 05 February 2024 and data before 12:50:00 07 July
2021 was discarded as most data is not available up until this date. Online data
available for collection can be divided into six sections:
- Recirculation
- Gas stirring
- Heat exchanger
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- Inlet
- Outlet
- Tank

3.4.1.1 Recirculation

For each tank there is a valve and a flow meter that determines the flowrate of
sludge from the outlet to the inlet for sludge circulation.

3.4.1.2 Gas stirring

In the subsystem of the biogas plant responsible for sludge stirring by pumping
gas back into the sludge has two useful parameters available: pump speed and
valve position for each side of the tank in each tank. Pump speed could be used
to predict gas flow rate into the sludge. This could have been useful if it affected
biogas output readings, but since those sensors are positioned after the gas stirring
loop, the stirring process should not introduce any measurable disturbances or
noise to the biogas output flowrate measurement. In total eight parameters were
extracted from the gas stirring subsystem, valve position for each of the eight gas
piping channels.

3.4.1.3 Heat exchanger

From the heat exchanger system, temperature values and flowrates were extracted.
Four flowrate values were used; three for sludge flow into each heat exchanger and
one for total hot water flow rate into the whole heat exchanger system. A total
of ten temperature values were available and extracted. Six values for sludge
temperature in and out of each of the three heat exchangers, three for hot water
temperature out of each heat exchanger and one temperature value for the hot
water flow into the whole heat exchanger system.

3.4.1.4 Inlet

Three different parameters related to sludge influent are available from online
measurements: Volumetric flowrate, temperature and percentage of total solids.
Temperature are measured in two different places between the thickening tanks
and the biogas reactor tanks, on both side of a hold up tank with a bypass pipe
which can re-direct the sludge inlet flow past the second set of sensors. The second
set of sensors after the hold-up tank are split into two channels in parallel with one
pump each for redundancy. Since both flows after the hold-up tank and the pipe
channel bypassing these pumps and hold-up tank are connected to valves logged
in the online data, the temperature readings in each channel can be linked to the
position of the adjacent valve. Using that method, temperature readings for the
inlet sludge flow are determined by the temperature reading of the channel with
a valve in the open position.
Percentage of TS are measured before the hold-up tank and volumetric flowrate
between the thinkening tanks and the bioreactor tanks are measured both before
and after the hold-up tank.
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3.4.1.5 Outlet

Outlet data are values connected to both the gas and sludge outlet pipes. For the
sludge outlet pipes the volumetric flowrate from all tanks are extracted aswell as
valve position of each tank outlet to determine which tank the sludge is flowing
from. For gas outlet normalized volumetric flowrate from each tank is extracted
aswell as a value for all tanks expected to be a summation for each tank and not
an independent measurement.

3.4.1.6 Tank

Two parameters are extracted from each tank: Sludge height and foam height and
are the only available online measurements to determine bio reactor state mea-
sured within the tanks. Temperature measured from the sludge outlet is assumed
identical to the sludge in the tank and is the last reactor state parameter. These
measurements consists of two sensor readings, believed to be used for redundancy.

3.4.2 Data pre-processing

Collected data can consist of unwanted values due to a variety of sources. Distur-
bances in the measuring environment can manifest in noisy measurements, and
can also lead to faulty measurements due to clogging. Sensors itself has their own
specifications that determines how a sensor will react to changes in the measured
medium. Resolution defines the step size in the sensor output, sensing range de-
fines the maximum and minimum values it can measure, sensitivity defines how
small of a change in the measured medium can be for the sensor to be able to
respond and responsiveness can tell how fast the sensor can settle to a steady
value after a change in the measured medium. Because of this, a raw measured
value is not a direct representation of what the sensor tried to measure.
To improve on the correlation between a raw measured value and the actual un-
known value, the nature of the actual unknown value would be useful for determine
the quality of the measured data, and to find the optimal strategy for modifying
the measured data.
One way of doing this is through the use of a Kalman filter. This uses First Prin-
ciples Modelling, by knowing the differential equations of the system to predict
the measured value as a combination of the actual value and one or several noise
values.
Since First Principal Modelling will not be used in this project, there are no dif-
ferential equations available to create a theoretical model for pre-processing of the
data. Any modifications of the data will, for that reason, be based on experience
and knowledge of the physical plant from plant operators and engineers.

After extraction of relevant data all signal values were treated equally in terms
of filtering and smoothing. Any signals that were analyzed for having outlier values
were subjected to removal of these values and replaced using linear interpolation.

Smoothing of the data was done to remove the oscillations in the signal from
plant operation. The motivation of this action was that any optimization and
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learning algorithm might try to fit their model to these high frequency oscilla-
tions. As the aim of the project was to try to find a model that can simulate a
biogas plant in the range of hours and days, any oscillations with shorter wave
length than this needed to be filtered out. A moving mean window was chosen for
this filtering, to reduce these oscillations and applied to all signals collected.
The window size was chosen to not exceed 1/10th of the biggest time constant
for the model created using System Identification. As the work of processing data
was needed to be done before creation of any model, the time constant to use
as reference was set to 1350 minutes based on previous work on the same biogas
facility[15].

For both model creation methods of Machine Learning and System Identifica-
tion, min-maxing was done to all variables. For System Identification modelling,
normalization was also done to all variables since System Identification optimiza-
tion functions using deviation variables. To normalize the variables all signal
values are subtracted by the average of the signal value.

For any online data included in the lab dataset for the West model, all values
were scaled to the correct unit required in the West software but no min-maxing
or normalization was needed for that dataset.

3.4.3 Dataset creation

3.4.3.1 Online dataset

After all pre-processing of online signal values, a decision was needed to choose
what variables to include for the models. Volumetric flowrate of biogas is the linked
variables and the parameter the project was aimed at controlling. A correlation
plot between the controlled variable and other relevant variables in the biogas plant
was created to create a tool for determine what parameter variables to choose as
the input to the later created models.

3.4.3.2 Lab dataset

Available from the lab analysis were results from sludge samples taken daily from
monday through friday from 30 June 2022 through 29 July 2022. Samples were
taken from two locations in the biogas plant. The data used for this project was
lab analysis from the sludge samples taken from buffer tank 1. This was done in
order to calculate what was pumped into the anaerobic digesters. Table B.1 lists
all values measured from the daily sludge samples, while table B.2 lists all values
needed for the anaerobic digester model in the West software.

The West model required all acids to be converted to theoretical COD equiv-
alents in units gCOD/m3. From [16] equation 3.1 was used to calculate the
conversion from pure acid concentration in mg/l to theoretical COD weight for all
acids where "n", "a", "c" and "b" represent number of carbon, hydrogen, oxygen
and nitrogen atoms respectively in the acid molecule. Converted unit output is
unchanged, but the sludge density was assumed to be 1000 kg/m3, so mg/l was
converted to g/m3 directly.
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thCODeq =
(2n+ 0.5a− 1.5c− b)16

12n+ a+ 16b+ 14c
(3.1)

To create a complete dataset containing all required inputs for the West model,
the following strategy was used:

- Sludge flowrate (Q) was imported from online data and converted to the
proper unit.
- All acids were converted using equation 3.1 and imported, combining heptanoic
and hexanoic acids as a combined parameter and likewise with isovaleric and
valeric acid.
- S_su (sugars) were calculated using S_su = sCOD∗Xch

tCOD−sCOD

- S_cat were imported directly from lab data and S_an = 14− S_cat
- S_Inert was calculated as the difference between sCOD and the sum of sugars,
VFAs and aminoacids: S_Inert = sCOD − S_ac − S_bu − S_fa − S_pro −
S_va− S_su− S_aa
- Carbohydrates (X_ch), X_li (lipids) and X_pr (proteins) were imported from
lab data and converted to correct unit
- X_Inert was calculated as X_Inert = tCOD−sCOD−X_ch−X_li−X_pr
- FSS (X_u_ig) was calculated as TS-VS and converted from percentage to g/m3

- All remaining parameters needed for input into the West anaerobic digester model
were set to 0.0001, as these parameters were assumed not present. They were,
however not set to zero to avoid any potential division error during simulation.

3.5 Modelling

3.5.1 System Identification

The goal model using System Identification was to create an array of transfer func-
tions between the array of input variables and the biogas output variable (see fig.
3.5.1). Using that model layout a single layer of transfer functions separates inputs
from output and simplifies the model compared to the ADM1 model. The this
layout with the signal inputs included in the online dataset, the model equation
in Laplace space results to:

Fout(s) = u1(s) ∗Gp1(s) + u2(s) ∗Gp2(s) + ...+ un(s) ∗Gpn(s) (3.2)

Each transfer function for every input variable was identified for two different
responses; zero-order and 1st-order response, both without time delay.

0− order : Gpn(s) = Kp (3.3)

1st − order : Gpn(s) =
Kp

T1s+ 1
(3.4)

The online data was normalized by subtracting every value by the variable
mean, and the dataset was split in two subsets with equal amount of sample data
points, where the chronologically first subset was used for training while the last
subset was used for validation. This method was used to avoid overfitting by
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Figure 3.5.1: Flow chart of the model created using System Identification
method

testing the model to a part of the dataset it has not been fitted for.
A loop was used to iterate through each combination of response types for all input
variables, and estimate all transfer functions to fit to the output data. For every
combination of transfer functions for the model, the coefficient of determination
(R2-index) was calculated after training to determine how similar the model output
is to the actual plant data. For model output ỹi and actual plant output yi for i
samples, coefficient of determination was calculated as follows:

ȳ =
1

n

n∑
i=1

yi (3.5)

SSres =
n∑

i=1

(yi − ỹi)
2 (3.6)

SStot =
n∑

i=1

(yi − ȳ)2 (3.7)

R2 = 1− SSres

SStot

(3.8)
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3.5.2 Machine Learning - RNN

The created model architecture or topology did not have a defined shape for initial
training runs, but rather iterations were used to find a topology that would out-
put a stable response. Too small of a network and the network model would not
have enough adjustable parameters to respond to back propagation to optimize
its response to the resolution of the actual plant data output it tries to replicate.
Too many tuneable parameters as a result of too large of a network and the model
could output a oscillating response output. The number of hidden layers and the
layer height was therefore initiated at small values and increased until oscillations
started to become present.

Figure 3.5.2: Topology of a LSTM network

Figure 3.5.3: Sliding prediction windows for prediction of future plant output
by LSTM model

Dimensions of the input layer were dependent on the number of samples the
network needed to analyze to predict a future output and the number of input and
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output variables. The dimension of the output layer is dependent on number of
future samples the network is designed to predict for every step and the number
of output variables. Where m is the sum of input and output variables, n is the
number of samples in the observation horizon, p is the number of output variables
and q is the number of predicted future output samples, figure 3.5.2 illustrates the
topology of the input and output layers in the constructed network.

Illustrated by figure 3.5.3 shows the construction of the data fed to the RNN-
model for prediction of future plant output. Two-dimensional windows of m vari-
ables and n samples got stacked after one another where every subsequent window
was shifted by the length of the prediction horizon, q. For a dataset of length l, the
resulting input data object was a three-dimensional data object of size m ∗ n ∗ l

n
,

while the output data object was a three-dimensional data object of size p ∗ q ∗ l
n
.

3.5.3 West model

Figure 3.5.4: Layout of the simulation project in West software

The model created in West was set up using specifications directly adopted
from the Veas facility. From the Sludge Treatment-pane in the West software,
the Anaerobic Digester module were imported and all specifications were kept as
default except for parameters listed in table 3.5.1.

All areas listed in table 3.5.1 are calculated from defining the anaerobic diger-
ster tanks at Veas as four cylindrical volumes of 20 meters of height and internal
volume of 6000 m3 each. The adopted surface areas were calculating the resulting
area on top, bottom and sides as the sum of the calculated surfaces of all four
tanks. Volumes were calculated as the liquid height had a static height value of
18 meters with a two meter headroom occupied by the biogas volume.
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Table 3.5.1: List of defined parameters set in Anaerobic Digester module in West
software

Parameter name Value
A_bottom 1200 m2

A_top 1200 m2

A_wall 4912 m2

Vol_gas 2400 m3

Vol_liq 21600 m3

Temperature parameter for the Anaerobic Digester-module could be set to a
static value, but since this parameter was available from the online dataset, tem-
perature measurements were calculated as follows:
- There were two temperature measurements in the outlet of each of the four tanks.
The average of these two values were adopted with 10 minute intervals.
- The average tank temperature value were summed up for all four tanks, weighted
by their sludge height. Where Ti is average temperature reading for tank i, hi is
height of sludge in tank i and Ttank is overall temperature reading used in West
simulation:

Ttank =

∑4
i=1 Tihi∑4
i=1 hi

(3.9)

- All temperature samples were summed up and the mean value for each day to a
daily temperature value to achieve the same sample frequency as the rest of the
lab dataset.

Flowrate of sludge in the inlet was imported from the online dataset. values
were converted from l/s to m3/day by first converting to m3/sample (in online
dataset one sample equals ten minutes). Then all sample values were summed up
for each day to achieve daily flowrate values that, in similar fashion to temperature
data, would have the same sample frequency as the lab dataset.

Figure 3.5.5: Setup of the Municipality Wastewater module in West. No frac-
tionation was used as all ADM1 parameters were defined directly in the lab dataset

A Municipality Wastewater module from the Input and Output pane was also
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imported, to simulate a flow into the Anaerobic Digester module. This module
were set up to import and export ADM1 parameter data directly from the lab
dataset (fig 3.5.5) including flowrate of the sludge influent from the online dataset.

3.6 Control
Controller strategies was developed for each of the three created models individ-
ually. For the model created using System Identification, both a PI-controller
and an MPC-controller was implemented. For the model created using the West
software and the LSTM model, PI-controllers were implemented. The aim of the
work of creating closed loop systems by implementing controllers to the models
was to regulate the simulated biogas production rates.

3.6.1 System Identification model

Using MatLab Simulink the model was loaded using an LTI block. All normalized
input and output variable data from the online dataset were imported as a two-
dimensional arrays with two columns each. The first column contained the time
step iterations and the second column contained the data values.
The flowrate of sludge in the inlet was set as manipulated variable (MV), while the
remaining input variables were set as disturbance variables (DV). All DVs were
connected to the model, while the MV was replaced by the PI-controller. The ar-
gument for the input to the PI-controller was the error between the model output
and a desired setpoint. The final diagram of the closed loop system is illustrated
in figure 3.6.1.

Figure 3.6.1: Simplified diagram of the closed loop system including a PI-
controller and the SI-model.

3.6.1.1 PI-controller

The PI controller was tuned by using the method of Skogestad’s Internal Model
Control (SIMC) [17]:
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For a PID controller:

c(s) =
Kc

τIs
(τIτDs

2 + (τI + τD)s+ 1) (3.10)

Removing the D-term yields:

c(s) = Kc(1 +
1

τIs
) (3.11)

Calculating Kc and τI was done by observing the transfer function for the MV
in the SI-model. For a first order function 3.4:

Kc =
τ1

Kpτc
) (3.12)

and

τI = min{τ1, 4 ∗ τc} (3.13)

where τc is a single parameter used to tune the controller to achieve a desired
model output and regulation of the MV.

The controller was tested and tuned by using the actual plant output data from
the online dataset as setpoint and then observe both simulated model output and
the controller regulation of the MV and adjusting τc. The goal was to avoid an
on-off regulation of the MV, while also get the model output to track the setpoint
as close as possible.

3.6.1.2 Model Predictive Controller (MPC)

Figure 3.6.2: Simplified diagram of the closed loop system including a MPC-
controller and the SI-model.

The MPC was implemented the same way as the PI-controller by loading the
SI-model in MatLab Simulink and creating a closed loop system with the model,
the MPC and the online data as DVs, MV and controlled variable (CV) (figure
3.6.2). As all the DVs in the closed loop system are measured live, these variables
was considered observable, so were included as arguments for the MPC controller
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to use.
Tuning of the MPC was done by initially setting the weight for the MV value to
0, and the weight for the error between biogas output rate and the setpoint to
1. Then, weight of rate change of MV was increased until controller instability
were reduced and on-off behaviour of the MV was reduced to a movement pattern
similar to the actual plant data so as to avoid unnecessary wear on the plant
system.
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RESULTS

4.1 Data

4.1.1 Online data analysis

4.1.1.1 Sludge height

Observing sludge height measurements it is apparent that the measurements are
recording the emptying of Tank 4 in July 2023 (fig.4.1.1). This divides the oper-
ation into two chapters: Before and after emptying of Tank 4. There are sudden
increases in tank height measurement values in Tank 4 during the emptying phase,
but these value changes can be ignored as this was not part of the emptying op-
eration.

Figure 4.1.1: Sludge height measurements for all tanks

It is also observable that there are outliers and oscillations in the data, and
would suggest that there is a need for filtering of these measurements. A last
observation is also that the sludge height in all tanks stays fairly consistent and
similar for all tanks during operation.

25
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4.1.1.2 Tank temperature

Each tank has two sensors measuring the sludge effluent temperature for redun-
dancy. By plotting all eight values (fig.4.1.2), a similar pattern emerges between
sludge height (fig.4.1.1) and tank temperature: Tank 4 has sudden changes for
temperature at the same time as as the sludge height is reduced. As the tank is
taken out of the circulation through the heat exchangers, the temperature sen-
sors, located at the outlet of the tank measures a declining temperature value.
When the emptying phase is completed, the sensors are still in operation, but are
measuring the ambient temperature that is decreasing until January 2024.

Figure 4.1.2: Temperature measurements for all tanks

Figure 4.1.3: Sludge effluent temperature measurement oscillations

The wave length for the temperature measurement oscillations is observed to
be consistent at approximately three hours before Tank 4 is taken out of operation,
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but reduces in length after it is out of operation. These oscillations is a contri-
bution of the Round-Robin operation of the heat exchangers. There are outliers
present in these temperature values that is not confirmed by any of the operators
at Veas, and will treated as faulty values.

4.1.1.3 Influent temperature

Temperature measurements in the influent (fig.4.1.4) consists of three sensors at
three different places in the pipe network between the main hold-up tanks and the
biogas reactor tanks. Two of the sensors are connected to two pumps in parallel
after a secondary hold-up tank between the main sludge hold-up tanks and the bio
reactor tanks, while the last temperature sensor is connected to a bypass valve of
the secondary hold-up tank (fig. 3.2.1). The different temperature measurements
are following the same trends of increasing and decreasing temperature with the
seasons, but they are also oscillating with another shorter wave length. By com-
paring this high frequency oscillation with what buffer tank is being emptied, a
pattern emerged, indicating that the buffer tank temperatures were different. The
sludge fed to the two buffer tanks are coming from two different parts of the Veas
facility, so this can be a plausible scenario. There are, however some noticeable
spikes in the signals that should be treated as faulty measurements.

Figure 4.1.4: Sludge Influent temperature measurements

4.1.1.4 Influent flowrate

Studying the data from the flowrate measurements in the influent, there are no-
ticeable "steps" in the data with height difference of 0.5 l/s, suggesting a result
of operation control. There are, however, outliers present where values of 0 are
logged. Confirming this with Process Engineer at Veas, Morten Rostad Haugen,
these are a result of maintenance and other logged event during operation. These
zero-values are therefore not considered as faulty measurements and will not be
filtered out as missing values.
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Figure 4.1.5: Sludge Influent flowrate measurements

4.1.1.5 Influent TS

Percentage of TS in the sludge influent stays consistent through the years, but
experiences a high frequency oscillation similar to the inlet temperature signals.
This, in conjunction with a steady frequency might indicate these oscillations as
a result of plant operation and not as a measurement noise.
Confirming with Veas, one of the buffer tanks is receiving its sludge from a return
flow from the outlet of the biogas plant. As sludge is being pumped out of the
tanks, it enters a thickener tanks where excess water is removed and sent back into
the biogas plant. This is the source for the sludge entering buffer tank 2, so for
that reason it is reasonable to assume that the concentration of total solids in this
tank is lower. As with influent temperature, these high frequency oscillations will
therefore not be treated as noisy measurements, but rather as a part of normal
plant operation.
There is also a static measurement value for TS in the sludge influent between 11
Nov and 19 Nov 2021, which reduces the data range for the final dataset.

4.1.1.6 Effluent Biogas

Flowrate of produced biogas out of the bioreactor is logged both as a parameter
for total biogas production flowrate for the whole plant and as single parameters
for each tank. Comparison between the total signal and the sum of all the four
individual signals gives an IAE = 66620 and an average difference of 0.4906 per
sample. Dividing this average difference with the average value for total biogas
flowrate in the data, a relative average difference between the two parameters
can be determined to see how similar they are to each other. With the average of
total biogas flowrate being 1194.4 [Nm3/h], the relative average difference between
the two parameters equals 0.041%, indicating that these values are near identical.
The production rate has a trend of reduced values during the summer holidays,
there are oscillations with both high and low frequencies in the signal, and outliers
observed as spikes in the data. There is also static values in this data from 30 Oct
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Figure 4.1.6: TS sludge influent

to 10 Nov 2021.

Figure 4.1.7: Biogas production measurements

4.1.1.7 Dataset range

The available data for analysis ranged from 07 July 2021 at 12:50:00 to 05 February
2024 at 13:30:00. However, due to emptying of tank 4, operation of the biogas
plant changed during this date range and resulted in an end date for the created
dataset at the start of the emptying phase. Noted previously, there are noteable
static values in the data for sludge influent temperature and TS%. This can affect
the modelling part of the project, so the final dataset date range will be reduced
to start at 00:00:00 19 Nov 2021 and end at 10 July 2023 at 09:00:00.
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Figure 4.1.8: Sludge height and biogas flowrate in tank 4 (min-maxed values)

4.1.2 Dataset creation

The final online dataset was created to include both the output biogas flowrate and
all input parameters fed to the created models. To identify what input parameters
to use as inputs, a correlation plot was created. By minmaxing all parameters,
the following parameters were included in the analysis:

Input:
- Temperature in the sludge inlet(T in)
- Flowrate of sludge in the inlet(F in)
- Average temperature in the tanks (T tank)
- Total height of sludge in all tanks (H sludge)
- Total foam height in all tanks (H foam)
- Total solids percentage in the inlet sludge (TS in)

Output:
- Volumetric biogas production (F out)

Using the Pandas library available for Python, three methods were available
for correlation comparison:
- Pearson
- Spearman
- Kendall

Table 4.1.1 show highest correlation for flowrate and percentage of total solids
inlet sludge, and height of foam in the digester tanks. Temperature and height
of sludge in the tanks showed the least correlation to production rate, but since
these are regulated parameters in normal plant operation, these values shows less
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variance and might affect any correlation calculation. Temperature in the sludge
inlet showed a negative correlation for all of the three methods, which means
that the correlations found expects a reduced production rate for increase in inlet
sludge temperature.

Table 4.1.1: Correlation values between selected parameters and biogas produc-
tion rate using Pearson, Spearman and Kendall method

Input Pearson Spearman Kendall
F in 0.6156 0.6308 0.4633
T in -0.2287 -0.2612 -0.1703
TS in 0.2494 0.2896 0.1990
T tank 0.0663 -0.0507 -0.0341
H sludge -0.0449 -0.1159 -0.0766
H foam 0.3121 0.3130 0.2202

Choosing parameters to include in the online dataset ended up being:

Input:
- Sludge flowrate in (F in)
- Temperature in (T in)
- Total Solids in (TS in)
- Height of foam in tank (H foam)

Output:
- Volumetric biogas production (F out)

4.2 Modelling

4.2.1 System Identification

The System Identification algorithm was run using MatLab version R2023a on a
desktop computer running Windows 10. The specifications on the computer was
an Intel Core i5-6500, 16 GB of DDR4 RAM and an Nvidia GTX1080Ti graphics
card.

After testing all combinations of transfer functions for the model, the combi-
nation with the best coefficient of determination was with a zero-order function
between the TSin and Fout and the rest as first order functions (see table 4.2.1).

The dataset was divided into two equally large subsets, and the later, test
dataset was used for performance evaluation.
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Figure 4.2.1: Biogas output of actual plant data (blue) and System Identification
model output (orange) for testing subset of online dataset

Table 4.2.1: Parameters for transfer functions for the fitted model with the
highest coefficient of determination

Input variable Kp τp

F in 0.7599 59.64
T in -0.3198 3432
TS in 0.4205 0
H foam 0.0748 3.662

Table 4.2.2: Coefficient of determination (R2-index) between actual plant output
and SI-model output for training and testing subset of online dataset

Dataset R2

Training 0.6944
Testing 0.3368

4.2.2 Recurrent Neural Network

The models was created using Visual Studio Code running on the same computer
as was used on the System Identification-work. Tensorflow and Keras library was
used to set up the LSTM-model in Python and Pandas and Numpy was used for
handling and construction of the datasets.
The dataset was split in two parts with the same date ranges as for SI-model. The
first date range subset was used for training, while the second set was used for
testing and calculating performance in terms of accuracy to actual plant data.



CHAPTER 4. RESULTS 33

Figure 4.2.2: Biogas output of actual plant (orange) data and RNN model (blue)

Table 4.2.3: Coefficient of determination (R2-index) between actual plant output
and LSTM model output for training and testing subset of online dataset

Dataset R2

Training 0.6469
Testing 0.1355

4.2.3 West model

The West simulation outputted values in m3/day and was converted to m3/hour
to match with the online data and the output of the other models. Although the
input in the simulation had sample frequency of one sample per day, the exported
data had 144 samples per day, resulting in equal sample frequency as the other
models.

To compare performance metrics between the models, both the SI model and
the LSTM model outputs were compared for the same lab dataset date range.
Neither model was trained or fittted to that part of the online data range.

4.2.4 Model comparison

To compare performance metrics between the models, both the SI model and the
LSTM model outputs were compared for the same lab dataset date range. Neither
model was trained or fitted to that part of the online data range.

New coefficients were also calculated for the new lab dataset range. Doing
this created a performance metric to compare all three models during the same
conditions.
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Figure 4.2.3: Biogas output of actual plant data and West model output between
30-June-2022 and 28-July-2022

Table 4.2.4: Coefficient of determination for all three models against the online
biogas production rate during the span of the lab data range

Model R2

SI 0.5009
LSTM -3.139
West -0.3726

4.3 Controllers

4.3.1 System Identification model

4.3.1.1 PI controller

Using flowrate of sludge into the anaerobic digesters as the manipulated vari-
able for the PI-controller to modify so to regulate the controlled variable, biogas
flowrate out of the plant, the controller was tuned by the transfer function between
them in the SI-model:

Gfin(s) =
0.7599

59.64s+ 1
(4.1)

By tuning the PI-controllers parameter, τc, the resulting PI-controller param-
eters ended at:

The resulting closed loop system was then tested by using the actual plant
output from the dataset as the setpoint, testing if the system would use similar
sludge flowrate into the system to achieve equal biogas production rates as the
actual plant. Figure 4.3.1 and A.2 shows closed loop performance for this setpoint.
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Table 4.3.1: Parameters of tuned PI-controller

Parameter Value
τc 100
P 0.7848
I 0.0132

Figure 4.3.1: Biogas production rate of the anaerobic digester. Blue graph
represents the actual data values, while red are the flowrate controlled by the
PI-controller

4.3.1.2 MPC controller

Setup of the MPC-controller was to use the same input variable as manipulated
variable as for the PI-controller (see table 4.3.2). MV rate weight was not used and
set to 0 to be able to compare performance with the PI-controller. MV rate weight,
penalizing changes in MV reduces the amplitude of the controller behaviour, and
was increased until the resulting adjustment the MPC made avoided saturation
at the limits or excessive oscillations. MV limits were set to the minimum and
maximum values of the sludge flowrate into the anaerobic digester in the dataset.

Table 4.3.2: Parameters of tuned MPC-controller

Parameter Value
Sampling time 1
Prediction horizon 120
Control horizon 60
Lower MV limit min(F in)
Upper MV limit max(F in)
CV weight 1
MV weight 0
MV rate weight 20
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Figure 4.3.2: Biogas production rate of the anaerobic digester. Blue graph
represents the actual data values, while red are the flowrate controlled by the
MPC

4.3.2 Recurrent Neural Network model

Figure 4.3.3: Layout of closed-loop integration of PI-controller with RNN-model

The tuned PI-controller from the SI-model was adopted directly while keeping
the same parameter values. For each prediction window passed into the RNN-
model, the output prediction would be compared to the actual plant output for
the same time sample window. For both prediction output and actual output,
the array of sample values was summed up and the difference in sum between the
actual output and the prediction became the error argument which was passed
back into the PI-controller. The new error argument would then produce a new
output out of the PI-controller that would become the new value for MV (F in)
for the next iteration of prediction for the RNN-model.
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Figure 4.3.4: Flowrate of biogas production. Orange graph represents the output
of the closed loop system of RNN model and PI-controller, while blue graph is the
setpoint (actual plant data).
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FIVE

DISCUSSION

5.1 Discussion

5.1.1 Datasets

The data available were extensive and the availability of the data resulted in an
extensive online dataset covering flow rates, height measurements and valve posi-
tions for the entire biogas facility. Comparing the data available to other similar
scientific simulation projects revolving the anaerobic digester, data on sludge com-
position and AD states could result in more accurate simulations if available.
Looking back on the filtering on the dataset, the created online dataset could
probably need more filtering, as oscillations as a result of plant operation was still
present after pre-processing. This could be the culprit for the oscillations of both
the RNN-model and the SI-model for which it was trained.
The lab dataset was a complex task to combine, but the sludge sample analy-
sis and the data it produced to compose this dataset resulted in a simulation run
trending in the same direction during the dataset range for the AD model in West.

5.1.2 Modelling

There were clear differences in the result of the different methods in modelling
applied in this thesis. System Identification showed promising result although the
R2-index dropped between the subset used for training and the subset used for
testing. Observing figure A.1, the model follows the actual output more closely
than any of the other two in that sample range, even as that range falls outside
the training dataset.
RNN-model based on LSTM-nodes proved to be a complex task in tuning. Oscil-
lation could occurr for small network topologies, down to two hidden layers and
five nodes in each. If the batch size was set too small or the learning rate too
low, oscillation or unwanted behaviour could easily arise. Studying the methods
adopted by others in their research papers, some scientific studies applied a hybrid
approach, by combining different types of machine learning network types.
The simulation run done using the AD-module in DHIs West tool showed more
stable results than the other two during the date range it was fed. The output
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of the model increased and decreased as the actual output did the same, even as
there was an offset between the two signals. This can undoubtedly be corrected
by further tuning of the AD-module settings in the software

5.1.3 Controller

All controllers implemented in the project were able to regulate the Controlled
Variable with varying accuracy. For the SI-model both the PI-controller and the
MPC-controller were able to track the setpoint without extensive deviation while
also being be tuned to reduce controller actions applied to the MV.
Applying the PI-controller to the RNN-model worked, while still being sub op-
timal. Oscillations dominated the signal spectrum and should be avoided for all
physical systems. Oscillations trained inside the RNN-model could initiate this,
but it can also result from undesirable controller tuning. An idea of creating a
learning algorithm that could autotune the PI-controller was an idea, but the
project time frame would not allow it.

5.1.4 Future work

The MaxBiogas collaboration between Veas and OsloMet will continue and there
are challenges that can be handled as the next step in the project. Predicting
future influent to the holdup tanks could be beneficial, so the setpoint control can
be regulated to make room for potential increases in influent or organic concen-
tration. Trying to replicate or directly adopt more advanced Machine Learning
models could maybe result in more stable output, and finding a solution for con-
troller tuning for closed-loop ML-models.
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A - EXTRA GRAPHS

Figure A.1: Comparison of all models and actual AD output within lab dataset
range between 30-June-2022 and 28-July-2022
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Figure A.2: Flowrate of sludge into the anaerobic digester. Blue graph represents
the actual data values, while red are the flowrate controlled by the PI-controller

Figure A.3: Flowrate of sludge into the anaerobic digester. Blue graph represents
the actual data values, while red are the flowrate controlled by the MPC
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B - TABLES

Table B.1: Values extracted from the lab samples

Description Abbreviation Unit
Total Carbon Oxygen
Demand

tCOD mg/l

Soluble Carbon Oxygen
Demand

sCOD mg/l

Ammonium NH4-N mg/l
Acidity / Alkalinity pH 1-14
Total Solids mass TS %
Organic Solids mass of
Total Solids

VS %

Organic acids meq/l
Total alkalinity meq/l
Protein g/l
Raw fats g/100g
Carbohydrates g/l
Acetic acid mg/l
Propionic acid mg/l
Butanoic acid mg/l
Isovaleric acid mg/l
Valeric acid mg/l
Hexanoic acid mg/l
Heptanoic acid mg/l
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Table B.2: Values needed for anaerobic digester model in West

Description Abbreviation Unit
Volumetric flowrate Q m3/d
Aminoacids S_aa g/m3

Acetic acid S_ac g/m3

Propionic acid S_bu g/m3

Hexanoic + Heptanoic acid S_fa g/m3

Propionic acid S_pro g/m3

Sugars S_su g/m3

Valeric + Isovaleric acid S_va g/m3

Sulfate S_so4 g/m3

Sulfide S_IS g/m3

Methane S_ch4 g/m3

Hydrogen S_h2 g/m3

Dissolved liquid methane S_ch4_liq g/m3

Dissolved liquid carbon dioxide S_co2_liq g/m3

Dissolved liquid hydrogen S_h2_liq g/m3

Anion S_an g/m3

Cation S_cat g/m3

Inorganic carbon S_IC g/m3

Inorganic nitrogen S_INN g/m3

Soluble inert COD S_Inert g/m3

Phosphate S_po g/m3

Aminoacids degraders X_aa g/m3

Acetic acids degraders X_ac g/m3

Composite organics X_c g/m3

Butanic acid degraders X_c4 g/m3

Carbohydrates X_ch g/m3

Long chain volatile fatty acid degraders X_fa g/m3

Hydrogen degraders X_h2 g/m3

Lipids X_li g/m3

Protein degraders X_pr g/m3

Propionic acid degraders X_pro g/m3

Sugar degraders X_su g/m3

Bacteria degraders X_asrb g/m3

Bacteria degraders X_hsrb g/m3

Continued on next page
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Table B.2: Values needed for anaerobic digester model in West (Con-
tinued)

Bacteria degraders X_c4srb g/m3

Bacteria degraders X_psrb g/m3

Non-degradable particulate organic fraction X_Inert g/m3

Metal salt X_meoh g/m3

Metal salt - phosphorous X_mep g/m3

Metal salt - Sulfur X_mes g/m3

Inorganic solids (FSS) X_u_ig g/m3

Total gas flowrate G_Q m3/d
Methane gas flowrate G_CH4 m3/d
Carbon dioxide gas flowrate G_CO2 m3/d
Hydrogen gas flowrate G_H2 m3/d
Hydrogen suflide gas flowrate G_H2S m3/d
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B - CODE

Python code to train an RNN model on a loaded dataset
import numpy as np import pandas as pd import tensorflow as tf from tqdm

import tqdm from keras.models import Sequential from keras.layers import LSTM,
Dense from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from
sklearn.modelselectionimporttraintestsplit

path = ’C:/Users/truls/OneDrive - OsloMet/Semester 8/Data/Datasets/Re-
port sets/subsetrnnminmaxedf iltered.csv

′df = pd.readcsv(path)df = df.drop([”Date”, ”Hsludge”], axis =
1)datalength = df.shape[0]inputdim = df.shape[1]− 2

timestep = 10minuteshour = int(60/timestep)day = 24 ∗ hourweek = 7 ∗ day
batchsize = [5]aheadpredictions = [2 ∗ hour]retentiontime = 20days
def trainmodel(batchsizes, aheadpredictions) :
for aheadpredictioninaheadpredictions :
for batchsizeinbatchsizes :
outputdim = aheadprediction
forecastwindow = int(retentiontime ∗ day)trainwindow = 42826testwindow =

datalength−trainwindow−forecastwindow−aheadpredictionprint(f”Testdays :
int(testwindow/day)”)

if aheadprediction >= day : modelname = f”str(int(aheadprediction/day))d”elifaheadprediction <
hour : modelname = f”str(int(aheadprediction ∗ 10))m”else : modelname =
f”str(int(aheadprediction/hour))h”

modelname+ = f”bstr(batchsize)”
""" print("Normalizing...")
for col in tqdm(range(df.shape[1])): minimum = min(df.iloc[:,col]) maximum =

max(df.iloc[:,col]) for row in range(df.shape[0]): df.iloc[row,col] = (df.iloc[row,col]
- minimum)/(maximum-minimum) """

Xtrain = []ytrain = []Xtest = []ytest = []
print("Constructing...") print(trainwindow, testwindow)
for i in tqdm(range(0, trainwindow + testwindow, aheadprediction)) : ifi <

trainwindow : row = [np.transpose([a])foraindf.tonumpy()[i : i+forecastwindow, 1 :
inputdim+1]]Xtrain.append(row)row = [np.transpose([a])foraindf.tonumpy()[i+
forecastwindow : i+forecastwindow+aheadprediction, df.shape[1]−1]]ytrain.append(row)else :
row = [np.transpose([a])foraindf.tonumpy()[i : i+forecastwindow, 1 : inputdim+
1]]Xtest.append(row)row = [np.transpose([a])foraindf.tonumpy()[i+forecastwindow :
i+ forecastwindow + aheadprediction, df.shape[1]− 1]]ytest.append(row)

Xtrain = np.asarray(Xtrain).astype(
′float32′)Xtest = np.asarray(Xtest).astype(

′float32′)ytrain =
np.asarray(ytrain).astype(

′float32′)ytest = np.asarray(ytest).astype(
′float32′)

print(Xtrain.shape,Xtest.shape)print(ytrain.shape, ytest.shape)
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model = Sequential([ LSTM(20, returnsequences = True, inputshape = (forecastwindow, inputdim)), LSTM(10), Dense(outputdim, activation =′

linear′)])
opt = tf.keras.optimizers.Adam(learningrate = 0.001)
modelcheckpointcallback = ModelCheckpoint(filepath = f ′C : /Users/truls/OneDrive−

OsloMet/Semester8/Models/RNN/Reportmodels/modelname.keras′,monitor =′

mse′,mode =′ min′, savebestonly = True)
learningratereduction = ReduceLROnPlateau(monitor =′ mse′, patience =

2, verbose = 1, factor = 0.5,minlr = 0.0000001)
model.compile(optimizer = opt, loss=’meansquarederror

′,metrics =′ mse′)
model.fit(Xtrain, ytrain, epochs = 50, batchsize = batchsize, callbacks = [modelcheckpointcallback, learningratereduction])
model.resetstates()ytrainpred = model.predict(Xtrain)ytestpred = model.predict(Xtest)
print(ytrain.shape, ytestpred.shape)
results = pd.DataFrame(data=’Predicted’ : ypred,

′ Actual′ : y)
traindict = testdict =
for window in range(len(Xtrain)) : traindict[f

′Predictedwindowwindow′] =
ytrainpred[window, :].f latten()traindict[f

′Actualwindowwindow′] = ytrain[window, :
, 0].f latten()forwindowinrange(len(Xtest)) : testdict[f

′Predictedwindowwindow′] =
ytestpred[window, :].f latten()testdict[f

′Actualwindowwindow′] = ytest[window, :
, 0].f latten()

resultstrain = pd.DataFrame(traindict)resultstest = pd.DataFrame(testdict)
results = pd.DataFrame(data=’Predicted’ : ypred[144, :].f latten(),

′ Actual′ :
y[144, :, 0].f latten())

resultstrain.tocsv(f ′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/RNNoutput/Reportoutput/modelnametrain.csv
′, index =

False)resultstest.tocsv(f
′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/RNNoutput/Reportoutput/modelnametest.csv

′, index =
False)

trainmodel(batchsize, aheadpredictions)
Load a trained RNN model and a dataset to run prediction and output a

prediction saved to csv
import tensorflow as tf import keras import numpy as np import pandas as pd

from tqdm import tqdm
path = ’C:/Users/truls/OneDrive - OsloMet/Semester 8/Data/Datasets/Re-

port sets/subsetrnnminmaxedf iltered.csv
′df = pd.readcsv(path)df = df.drop([”Date”, ”Hsludge”], axis =

1)datalength = df.shape[0]inputdim = df.shape[1]
timestep = 10minuteshour = int(60/timestep)day = 24 ∗ hourweek = 7 ∗ day
batchsize = 5aheadprediction = 2 ∗ hourretentiontime = 20days
def predictpidmv() :
forecastwindow = int(retentiontime ∗ day)trainwindow = 42826testwindow =

datalength−trainwindow−forecastwindow−aheadpredictionprint(f”Testdays :
int(testwindow/day)”)

if aheadprediction < day : modelname = f”str(int(aheadprediction/hour))h”else :
modelname = f”str(int(aheadprediction/day))d”modelname+ = f”bstr(batchsize)”

outputdict =
print("Constructing...")
model = keras.saving.loadmodel(f

′C : /Users/truls/OneDrive−OsloMet/Semester8/Models/RNN/Reportmodels/modelnamebackup.keras
′)

model.resetstates()
for i in range(0, trainwindow + testwindow, aheadprediction) :
print(i)
y = [] ypred = []
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row = [np.transpose([a]) for a in df.tonumpy()[i : i + forecastwindow, :]]x =
np.array(row)x = tf.reshape(x, [−1, 2880, 5])ywindow = model.predict(x)

for j in range(aheadprediction) : y.append(df.loc[i + forecastwindow + j +
1, ”Fout”])ypred.append(ywindow[0, j])df.loc[i+forecastwindow+j+1, ”Fout”] =
ywindow[0, j]

outputdict[f ′Predictedwindowint(i/aheadprediction)
′] = ypred

results = pd.DataFrame(outputdict)
results.tocsv(f ′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/RNNoutput/Reportoutput/modelnamepreddata.csv

′, index =
False)

predictpidmv()
Load a RNN-model and a dataset, define setpoint and PI-controller tune

and run prediction in closed loop state. Output saved to csv
import tensorflow as tf import keras import numpy as np import pandas as pd

from tqdm import tqdm
path = ’C:/Users/truls/OneDrive - OsloMet/Semester 8/Data/Datasets/Re-

port sets/subsetrnnminmaxedf iltered.csv
′df = pd.readcsv(path)df = df.drop([”Date”, ”Hsludge”], axis =

1)datalength = df.shape[0]inputdim = df.shape[1]
timestep = 10minuteshour = int(60/timestep)day = 24 ∗ hourweek = 7 ∗ day
batchsize = 5aheadprediction = 2 ∗ hourretentiontime = 20days
class PID:
def

init(self,pidvalues):self.p=pidvalues[0]self.i=pidvalues[1]self.integrator=0

def u(self, e): self.integrator += self.i*e u = self.p*e + self.integrator return u
pidcontroller = PID([0.7848, 0.0132])
def predictpidmv() :
setpoint = df.loc[:, ”Fout”]
forecastwindow = int(retentiontime ∗ day)trainwindow = 42826testwindow =

datalength−trainwindow−forecastwindow−aheadpredictionprint(f”Testdays :
int(testwindow/day)”)

if aheadprediction < day : modelname = f”str(int(aheadprediction/hour))h”else :
modelname = f”str(int(aheadprediction/day))d”modelname+ = f”bstr(batchsize)”

outputdict =
print("Constructing...")
model = keras.saving.loadmodel(f

′C : /Users/truls/OneDrive−OsloMet/Semester8/Models/RNN/Reportmodels/modelnamebackup.keras
′)

model.resetstates()
for i in range(0, trainwindow + testwindow, aheadprediction) :
print(i)
y = [] ypred = []
row = [np.transpose([a]) for a in df.tonumpy()[i : i + forecastwindow, :]]x =

np.array(row)x = tf.reshape(x, [−1, 2880, 5])ywindow = model.predict(x)
for j in range(aheadprediction) : y.append(df.loc[i + forecastwindow + j +

1, ”Fout”])ypred.append(ywindow[0, j])df.loc[i+forecastwindow+j+1, ”Fout”] =
ywindow[0, j]

error = setpoint[i+forecastwindow+1 : i+forecastwindow+aheadprediction+
1].sum()− np.sum(ywindow)

fin = pidcontroller.u(error)
df.loc[i+forecastwindow+1 : i+ forecastwindow+ aheadprediction, ”Fin”] =

[fin] ∗ aheadprediction
outputdict[f ′Predictedwindowint(i/aheadprediction)

′] = ypred
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results = pd.DataFrame(outputdict)
results.tocsv(f ′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/RNNoutput/Reportoutput/modelnamepiddata.csv

′, index =
False)

predictpidmv()
Combine all signal exported from Veas to one single csv-file
import os import pandas as pd from tqdm import tqdm
path = ’C:/Users/truls/OneDrive - OsloMet/Semester 8/Data/Datasets/Five

years’ startyear =′ 2019′outputf ile = ”D : /test.csv”
columns =[]
combineddf = pd.DataFrame(columns = columns)
shortest = float("nan")
for root, dirs, files in os.walk(path): for file in tqdm(files): if file.endswith(".csv"):

df = pd.readcsv(os.path.join(root, file), sep =′;′ , dtype = ”string”)startindex =
0year = df.iloc[startindex, 0].split(””)[0].split(” − ”)[0]whileyear! = startyear :
startindex+ = 1year = df.iloc[startindex, 0].split(””)[0].split(”− ”)[0]

if isinstance(shortest, float) or (df.shape[0] - startindex) < shortest : shortest =
int(df.shape[0]− startindex)

print(columns, shortest)
for root, dirs, files in os.walk(path): for file in tqdm(files): if file.endswith(".csv"):

df = pd.readcsv(os.path.join(root, file), sep =′;′ , dtype = ”string”)startindex =
0year = df.iloc[startindex, 0].split(””)[0].split(” − ”)[0]whileyear! = startyear :
startindex+ = 1year = df.iloc[startindex, 0].split(””)[0].split(”− ”)[0]

df.rename(columns= df.columns[1]: df.columns[0].split(".")[0], df.columns[0]:
"Date" , inplace = True)

df = df.iloc[startindex : startindex+shortest, :]df.resetindex(drop = True, inplace =
True)

if combineddf.shape[0] == 0 : combineddf = pd.concat([combineddf, df ], axis =
1)else : combineddf = pd.concat([combineddf, df.iloc[:, 1]], axis = 1)

combineddf = combineddf.iloc[132263 :, :]
combineddf.tocsv(outputf ile, index = False)
Methods (functions) used for composing online dataset
def getrowindex(df, datestart, dateend) : forrowinrange(df.shape[0]) : ifdf.loc[row, ”Date”] ==

datestart : rowstart = rowelifdf.loc[row, ”Date”] == dateend : rowend = row
return rowstart, rowend
def gettin(df, tempdict) :
templist = []
empties = 0 emptygap = 0emptygapmax = 0
for row in range(df.shape[0]): found = False multiple = False paramprev =

[]forkeyintempdict.keys() : ifdf.loc[row, tempdict[key]] > 0 : paramprev.append(key)iffound ==
False : found = Trueelse : multiple = Trueiffound : ifmultiple : tempval =
0total = 0forparaminparamprev : total+ = df.loc[row, tempdict[param]]tempval+ =
df.loc[row, tempdict[param]]∗df.loc[row, param]tempval/ = totaltemplist.append(tempval)else :
templist.append(df.loc[row, paramprev[0]])

else: templist.append(templist[−1])empties+ = 1emptygap+ = 1ifemptygap >
emptygapmax : emptygapmax = emptygap

return templist
def gettanktempheight(df, tags) :
templist = []heightlist = []
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for row in range(df.shape[0]):
temprow = 0heighttotal = 0
for tank in tags.keys(): temps = [df.loc[row,tag] for tag in tags[tank]["temp"]]

tempavg = sum(temps)/len(temps)tankheight = df.loc[row, tags[tank][”height”]]temprow+ =
tempavg ∗ tankheightheighttotal+ = tankheight

temprow/ = heighttotal
templist.append(temprow)heightlist.append(heighttotal)
return templist, heightlist
def getfoam(df, foamtags) :
foamlist = []
for row in range(df.shape[0]): vals = [df.loc[row,tag] for tag in foamtags]foamheight =

sum(vals)foamlist.append(foamheight)
return foamlist
def getbiogas(df, biogastags) :
biogaslist = []
for row in range(df.shape[0]): vals = [df.loc[row,tag] for tag in biogastags]biogasf low =

sum(vals)biogaslist.append(biogasf low)
return biogaslist
Composing of the online dataset
import pandas as pd from combineonlinemethodsimport∗
df = pd.readcsv(

′C : /Users/s356159/OneDrive−OsloMet/Semester8/Data/Datasets/F iveyears/combinedall.csv
′)df =

pd.readcsv(
′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/Datasets/F iveyears/combinedall.csv

′)
dateyearstart = ”2021”datemonthstart = ”11”datedaystart = ”19”datehourstart =

”13”dateminutestart = ”00”datesecondstart = ”00”datestart = f”dateyearstart−
datemonthstart− datedaystartdatehourstart : dateminutestart : datesecondstart”

dateyearend = ”2023”datemonthend = ”07”datedayend = ”07”datehourend =
”09”dateminuteend = ”00”datesecondend = ”00”dateend = f”dateyearend −
datemonthend− datedayenddatehourend : dateminuteend : datesecondend”

flowtag = ”FORFT02”
tempintags =

′RT −RT − TI94′ :′ RT −RT −KSV 132′,′ RT −RT − PU22TT
′ :′ RT −RT −KSV 133′,′RT −RT − PU21TT

′ :′ RT −RT −KSV 134′

tanktagstempheight = ”tank1” : ”temp” : [”RT1TT06”, ”RT1TT03”], ”height” : ”RT1LT05”,, ”tank2” : ”temp” : [”RT2TT06”, ”RT2TT03”], ”height” : ”RT2LT05”,, ”tank3” : ”temp” : [”RT3TT06”, ”RT3TT03”], ”height” : ”RT3LT05”,, ”tank4” : ”temp” : [”RT4TT06”, ”RT4TT03”], ”height” : ”RT4LT05”,
foamtags = [”RT1LB01”, ”RT2LB01”, ”RT3LB01”, ”RT4LB01”]
biogastags = [”RT − GSB − FI41”, ”RT − GSB − FI42”, ”RT − GSB −

FI43”, ”RT −GSB − FI44”]
def createnewsubset() :
rowstart, rowend = getrowindex(df, datestart, dateend)
templist, heightlist = gettanktempheight(df, tanktagstempheight)
newdfdict = ”Date” : df.loc[:, ”Date”], ”Tin” : gettin(df, tempintags), ”Fin” : df.loc[:, ”FORFT02”], ”Ttank” : templist, ”Hsludge” : heightlist, ”Hfoam” : getfoam(df, foamtags), ”TSin” : df.loc[:, ”FORQT01”], ”Fout” : getbiogas(df, biogastags)
length = float("nan") uneven = False for i, range in enumerate(newdfdict.values()) :

if len(range)! = lengthandi > 0 : uneven = Trueelse : length = len(range)
if uneven == True: print("Uneven length of data points") return pd.DataFrame(columns=[])

else: newdf = pd.DataFrame(newdfdict)newdf = newdf.loc[rowstart : rowend, :
].resetindex(drop = True)returnnewdf

newdf = createnewsubset()print(newdf)print(newdf.loc[0, ”Date”])print(newdf.loc[newdf.shape[0]−
1, ”Date”])print(newdf.shape)

newdf.tocsv(
′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/Datasets/Reportsets/subsetnew.csv

′, index =
False)

Extract lab measurements and convert to proper units
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import pandas as pd
df = pd.readexcel(

′C : /Users/s356159/OneDrive−OsloMet/Semester8/Data/Datasets/MergedLab−
andOnlinedataplusconversionsV easjuni− juli22.xlsx′)

startrow = 4endrow = 33
def fillcolumn(df, col, start, end) : prevvalrow = float(”nan”)prevval = float(”nan”)gap =

False
for row in range(start,end):
if df.iloc[row,col] == df.iloc[row,col]:
if gap == True: endval = df.iloc[row, col]foriinrange(row − prevvalrow) :

try : df.iloc[prevvalrow + i, col] = prevval + (i ∗ ((endval − prevval)/(row −
prevvalrow)))except : print(prevvalrow + i, col, endval, prevval)gap == False

prevvalrow = rowprevval = df.iloc[row, col]
else: gap = True
return df.iloc[start:end, col]
columns = ’tCOD’ : ’Rot’ : 3, ’FOR’ : 6 , ’sCOD’ : ’Rot’ : 9, ’FOR’ : 12 ,

’Protein’ : ’Rot’ : 53, ’FOR’ : 54 , ’Eddiksyre’ : 68, ’Butansyre’ : 70, ’Heksansyre’
: 73, ’Heptansyre’ : 74, ’Propansyre’ : 69, ’Isovaleriansyre’ : 71, ’Valeriansyre’ :
72, ’Karbohydrater’ : ’Rot’ : 57, ’FOR’ : 58 , ’pH’ : ’Rot’ : 19, ’FOR’ : 20 ,
’Rafett’ : ’Rot’ : 55, ’FOR’ : 56 , ’TS’ : ’Rot’ : 21, ’FOR’ : 22 , ’VS ’Rot’ : 23,
’FOR’ : 24 , ’NH4-N’ : ’Rot’ : 13, ’FOR’ : 14

newdict =
for key in columns.keys(): if isinstance(columns[key], dict): cols = columns[key].keys()

for col in cols: column = key + " " + col newdict[column] = columns[key][col]else :
print(key)newdict[key] = columns[key]

for key in newdict.keys() : newdict[key] = fillcolumn(df, newdict[key], startrow, endrow)
newdf = pd.DataFrame(newdict)
newdf.loc[:,

′ ProteinRot′]∗ = 1000newdf.loc[:,
′ ProteinFOR′]∗ = 1000newdf.loc[:

,′RafettRot′]∗ = 10000newdf.loc[:,
′RafettFOR′]∗ = 10000newdf.loc[:,

′ KarbohydraterRot′]∗ =
1000newdf.loc[:,

′ KarbohydraterFOR′]∗ = 1000newdf.loc[:,
′ TSRot′]∗ = 10000newdf.loc[:

,′ TSFOR′]∗ = 10000
print(newdf.loc[:,

′ ProteinFOR′])
newdf.toexcel(

′C : /Users/s356159/OneDrive−OsloMet/Semester8/Data/Datasets/test.xlsx′, index =
False)

Import extracted lab measurements and create the lab dataset for West
simulation

import pandas as pd
df = pd.readexcel(

′C : /Users/s356159/OneDrive−OsloMet/Semester8/Data/Datasets/test.xlsx′)
scod = df.loc[:,′ sCODFOR′]tcod = df.loc[:,′ tCODFOR′]xcod = tcod− scod
xpr = df.loc[:,′ ProteinFOR′]xch = df.loc[:,′KarbohydraterFOR′]
saa = (scod∗xpr)/xcodsac = df.loc[:,′Eddiksyre′]sbu = df.loc[:,′ Butansyre′]sfa =

df.loc[:,′Heksansyre′] + df.loc[:,′ Heptansyre′]spro = df.loc[:,′ Propansyre′]ssu =
(scod ∗ xch)/xcodsva = df.loc[:,′ Isovaleriansyre′] + df.loc[:,′ V aleriansyre′]san =
14−df.loc[:,′ pHFOR′]scat = df.loc[:,′ pHFOR′]sinn = df.loc[:,′ NH4−NFOR′]sinert =
scod−sac−sbu−sfa−spro−sva−ssu−saaxli = df.loc[:,′RafettFOR′]xinert =
xcod− xch− xli− xpr

xuig = df.loc[:,′ TSFOR′] ∗ df.loc[:,′ V S
newdict =

′xch
′ : xch,

′ xpr
′ : xpr,

′ saa
′ : saa,

′ sac
′ : sac,

′ sbu
′ : sbu,

′ sfa
′ : sfa,

′ spro
′ : spro,

′ ssu
′ : ssu,

′ sva
′ : sva,

′ san
′ : san,

′ scat
′ : scat,

′ sinn
′ : sinn,

′ sinert
′ : sinert,

′ xli
′ : xli,

′ xinert
′ : xinert,

′ xuig
′ : xuig

newdf = pd.DataFrame(newdict)
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newdf.toexcel(
′C : /Users/s356159/OneDrive−OsloMet/Semester8/Data/Datasets/newwestdataset.xlsx

′, index =
False)

print(newdf.columns)

corrdata = readtable(′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/Datasets/Reportsets/subset.csv′,′ V ariableNamingRule′,′ preserve′);

date = corrdata:,′ Date′;

corrdata = removevars(data, ′Date′);

timeconstant = 1350; samplelength = 10; timeconstantsamples = timeconstant/samplelength;

movingmeanwindow = round(timeconstantsamples/10);

for col = 1:width(corrdata)
corrdata:, col = movmean(corrdata:, col,movingmeanwindow);

colmin = min(corrdata:, col); colmax = max(corrdata:, col);

for row = 1:height(corrdata)
corrdatarow, col = (corrdatarow, col − colmin)/(colmax− colmin);

end end
corrdata.(”Date”) = date;

writetable(corrdata,′ correlationdataminmaxedf iltered.csv
′);

rawdata = readtable(′C : /Users/truls/OneDrive−OsloMet/Semester8/Data/Datasets/Reportsets/subset.csv′,′ V ariableNamingRule′,′ preserve′);

rawdata = removevars(rawdata,
′Date′); rawdata = removevars(rawdata,

′Hsludge′); rawdata =
removevars(rawdata,

′Ttank′);

timeconstant = 1350; samplelength = 10; timeconstantsamples = timeconstant/samplelength;

movingmeanwindow = round(timeconstantsamples/10);

for col = 1:width(rawdata)

rawdata:, col = movmean(rawdata:, col,movingmeanwindow); end

finmax = max(rawdata:, ”Fin”); finmin = min(rawdata:, ”Fin”);

tsinmax = max(rawdata:, ”TSin”); tsinmin = min(rawdata:, ”TSin”);

foutmax = max(rawdata:, ”Fout”); foutmin = min(rawdata:, ”Fout”);

for row = 1:height(rawdata)rawdatarow, ”Fin” = (rawdatarow, ”Fin”−finmin)/(finmax−
finmin); rawdatarow, ”TSin” = (rawdatarow, ”TSin”−tsinmin)/(tsinmax−tsinmin); rawdatarow, ”Fout” =
(rawdatarow, ”Fout”− foutmin)/(foutmax− foutmin); end

finavg = mean(rawdata:, ”Fin”); tsinavg = mean(rawdata:, ”TSin”); foutavg =
mean(rawdata:, ”Fout”);

data = readtable(’C:/Users/truls/OneDrive - OsloMet/Semester 8/Data/Dataset-
s/Report sets/normalizeddata.csv

′,′ V ariableNamingRule′,′ preserve′);

model = load(’simodel.mat′).tf ;

t = 0:1:height(data)-1; tend = length(t)− 1;

tin = [t’ data:,"T in"]; fin = [t’ data:,"F in"]; hfoam = [t’ data:,"H foam"];
tsin = [t’ data:,"TS in"]; fout = [t’ data:,"F out"];

k = model(1,1).Numerator/model(1,1).Denominator(2); tau1 = model(1, 1).Denominator(1)/model(1, 1).Denominator(2);

tauc = 100;Kc = tau1/(k ∗ tauc); tauI = min(tau1, 4 ∗ tauc);

P = Kc; I = Kc/tauI ;D = 0;

datalength = height(data); datasplit = int32(datalength/2);

u1 = [data1:datasplit, ”Fin”, data1 : datasplit, ”Tin”, data1 : datasplit, ”TSin”, data1 : datasplit, ”Hfoam”]; y1 =
[data1 : datasplit, ”Fout”]; estdata = iddata(y1, u1, 1);

u2 = [datadatasplit+1 : datalength, ”Fin”, datadatasplit+ 1 : datalength, ”Tin”, datadatasplit+ 1 : datalength, ”TSin”, datadatasplit+ 1 : datalength, ”Hfoam”]; y2 =
[datadatasplit+ 1 : datalength, ”Fout”]; valdata = iddata(y2, u2, 1);

N1 = max(length(y1)); t1=0:1:N1-1;
y1mean=ones(N1,1)*mean(y1); e1m=sum((y1-y1mean).2);
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N2=max(length(y2)); t2=N1:1:N1+N2-1; y2mean=ones(N2,1)*mean(y2); e2m=sum((y2-
y2mean).2);

R2tfold = −100000000000; remaining = power(2, 4);
for i = 0:1 for j = 0:1 for k = 0:1 for l = 0:1 neworder = [ijkl];newtf =

tfest(estdata, neworder,
′ InputName′, [”Fin”, ”Tin”, ”TSin”, ”Hfoam”],′ OutputName′, ”Fout”);

ytfval = lsim(newtf, u2, t2
′); etfval = sum((y2 − ytfval).2);R2tfval = 1 −

(etfval/e2m);
if R2tfval > R2tfolddisp(”newbest”)order = newordertf = newtf ; ytf =

ytfval; etf = etfval;R2tfold = R2tfvalend
remaining = remaining - 1
end end end end
plant = setmpcsignals(model, ’MD’, [2 3 4]);
Ts = 1; P = 120; M = P/2;
mvmax = max(fin(:, 2));mvmin = min(fin(:, 2));
MV1 = struct(’Min’,mvmin,

′Max′,mvmax);
MV = [MV1];
ovmax = max(fout(:, 2)); ovmin = min(fout(:, 2));
OV = struct(’Min’,ovmin,

′Max′, ovmax);
Q=[1]; Ru=[0]; Rd=[20]; W=struct(’ManipulatedVariables’,Ru,’ManipulatedVariablesRate’,Rd,’OutputVariables’,Q);
MPCcaseB = mpc(plant,Ts,P,M,W,MV);
xmpcaseB = mpcstate(MPCcaseB);
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