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ABSTRACT Deep Neural Networks have been shown to perform poorly or even fail altogether when
deployed in real-world settings, despite exhibiting excellent performance on initial benchmarks. This
typically occurs due to relative changes in the nature of the production data, often referred to as distributional
shifts. In an attempt to increase the transparency, trustworthiness, and overall utility of deep learning
systems, a growing body of work has been dedicated to developing distributional shift detectors. As part
of our work, we investigate distributional shift detectors that utilize statistical tests of neural network-based
representations of data. We show that these methods are prone to fail under sample-bias, which we
argue is unavoidable in most practical machine learning systems. To mitigate this, we implement a novel
distributional shift detection framework which explicitly accounts for sample-bias via a simple sample-
selection procedure. In particular, we show that the effect of sample-bias can be significantly reduced by
performing statistical tests against the most similar data in the training set, as opposed to the training set as
a whole. We find that this improves the stability and accuracy of a variety of distributional shift detection
methods on both covariate- and semantic-shifts, with improvements to balanced accuracy typically ranging
between 0.1 and 0.2, and false-positive-rates often being eliminated altogether under bias.

INDEX TERMS Deep learning, system support, neural networks, distributional shift, OODdetection, sample
bias, statistical tests.

I. INTRODUCTION
Although Deep Neural Networks (DNNs) have been shown
to exhibit excellent performance in a wide variety of tasks and
in a multitude of domains, recent research has shown that this
performance decreases rapidly if the model encounters data
that is not identically distributed to the training data [1], [2],
[3], [4], [5]. For example, deep image segmentation models
trained to segment polyps in the gastrointestinal tract have
been shown not to generalize to other hospitals or lighting
conditions than those observed in training data [6]. Similar
results have also been shown in skin-lesion classification [1]
and image-captioning models [3]. Even models trained on
large, general-purpose datasets such as ImageNet have been
shown to fail to generalize to ImageNet-like datasets [7].
This is referred to as generalization failure, and has been
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shown to be ubiquitous in predictive deep learning [1],
[8]. Data augmentation [9], multi-domain training [4],
[10], ensemble-models [11], [12] and consistency-based
methods [13], [14], [15] appear to show some promise toward
increasing generalizability, however, no existing methods
endow the models with sufficient generalizability for reliable
performance in practical conditions. There has also been
considerable research to address these shortcomings through
alternative training paradigms [4], but meta-analyses have
shown that these methods do not outperform conventional
training by a significant margin [16].

The apparent inability of DNNs to generalize severely
diminishes their potential utility, as distributional shifts
cannot realistically be prevented in most practical settings.
This is further complicated by the opaque nature of the
predictive process of DNNs. It is difficult to ascertain whether
the model is failing to generalize, and though implementing
explanations can assist somewhat in this regard [17], many
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domains require a higher degree of transparency in the
model’s performance than these methods can provide [18].
This has led to research towards Distributional Shift Detec-
tors (DSDs), which detects when the incoming data differs
from the data with which the predictive model has been
developed.

This paper considers a common approach to distributional
shift detection based on performing statistical tests on batches
of neural-network-based representations of the data.We show
empirically that these methods readily yield false positives
under sample-bias. Although sample-bias can be considered
a form of distributional shift, we argue that these shifts are
not important with respect to the fundamental goal of DSDs;
namely, determining whether the model can perform well
on the incoming data or if the data should be deferred for
further processing. For example, it is clear that a model
trained to detect objects of interest in an autonomous vehicle
should not be adversely affected by a decreased rate of object
occurrence when compared to a random sampling of the
training set. Though this can be considered a distributional-
shift – in particular, label shift – the model has likely been
trained on data that does not contain cars, pedestrians, or other
objects, and thus can be expected to perform well so long
as a more malignant shift has not occurred simultaneously.
Similarly, the aforementioned model is not likely to be
affected by sample-bias in time, subsequent frames from on-
board cameras. Indeed, in many deep-learning systems this
is considered regular operation. As our work will show, such
biases would nevertheless cause distributional shift detectors
to predict positively and thus raise alerts on data on which the
system would otherwise perform well.

We address this by augmenting the distributional shift
detection framework with a sample selection component,
such that the statistical tests are performed with respect to
the samples’ nearest neighbours in the training population
with respect to their latent representations. We compare
this framework, k-Nearest Neighbour Distributional Shift
Detection (kNNDSD), to our baselines and show that
our framework yields superior performance. kNNDSD
exhibits reduced false-positive rates, improved accuracy,
and improved separability of Out of Distribution (OOD)
and In-Distribution (InD) samples under sample-bias, while
maintaining equivalent performance without sample-bias.

Overall, we summarize our contributions as follows:
• We demonstrate experimentally that sample-based

DSDs fail under sampling- and label-bias given this
perspective.

• Wepropose the addition of a sample-selection procedure
to sample-based DSDs, which involves performing
statistical tests with respect to the samples’ nearest
neighbours in the embedding space.

• We show that this sample-selection procedure reduces
the effect of sampling-bias and label-bias.

• We perform a study of the impact of our method on
real-world datasets with organic distributional shifts and
sampling-biases.

All code and raw data used in this paper is available via
https://github.com/BirkTorpmannHagen/kNNDSD.

II. RELATED WORK
In this section, we motivate our work through contextualizing
the need for DSDs as a means of addressing generalization
failure. We then discuss related work on DSDs and uncer-
tainty estimation.

A. GENERALIZATION FAILURE
The performance of Deep Learning (DL) systems can
only be guaranteed under the independently and identically
distributed (IID) assumption [5]. In practical scenarios,
however, such assumptions rarely hold. Reference [1] explore
the effect this has on various DL systems across multiple
domains, and argue that overparametrization with respect to
the data is a primary contributing factor in generalization-
failure. They show that identically trained models can
exhibit very different levels of generalization on novel data,
dependent only on their random initialization. Reference [3]
consider generalization failure from a perspective of the types
of features learned, and show through multiple case-studies
that DNNs readily learn dataset-specific shortcuts rather than
generalizable features.

Reference [6] review the results of the EndoCV2021
competition [19], which is centered around generalizability
in the polyp-segmentation domain. The best-performing
approaches utilized ensemble-models [11], [12], but still
exhibited considerable performance drops when deployed
on data collected from different hospitals or with different
lighting conditions.

Reference [4] perform a survey on methods for gen-
eralizable learning, summarizing the key challenges and
approaches in the field. Reference [16] show that few of
these methods outperform conventional approaches outside
of the datasets upon which they were originally implemented,
demonstrating the difficulty involved in improving the
generalizability of DL models.

Reference [20] finds that CNNs are sensitive to noise and
common perturbations. Another study showed that Google’s
vision API is highly sensitive to noise [21]. Reference [22]
show that models trained on ImageNet are biased towards
textural features, and that imposing shape-biases improves
generalizability. Reference [7] investigate the generalizability
of DNNs trained on ImageNet, and observe that these models
do not generalize well to other ImageNet-like datasets.
Similar behaviour has also been found in models trained on
the CIFAR10 dataset [23].
Evidently, attaining sufficient levels of generalization is

a highly challanging and open problem in the field. Thus,
practical deployment of DL systems requires either that
variables that can influence the nature of the data are carefully
controlled, or system support which can raise alerts when
incoming data is likely to induce generalization failure.While
the former may be attainable in certain domains, the latter is
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a more general solution, and one of the motivators for recent
work on distributional shift detection.

B. DISTRIBUTIONAL SHIFT DETECTION
Fundamentally, the detection of distributional-shift involves
determining whether or not some data is identically dis-
tributed to a known dataset. Reference [24] provide a unifying
perspective on distributional shift, and argue that it can
generally be categorized according to the affected variables.
This includes:
• covariate shift, which occurs when there is a change in

the distribution of any of the input variables, i.e., P (x),
• prior probability shift, which occurs when there is a

change in the class-probabilities, i.e., P (y),
• and Semantic Shift which occurs when the underlying

relationship of the neural network is intended to
represent changes, i.e., a change in P (y|x)

Many DSDs do not explicitly differentiate between these
shifts. Pragmatically, however, different shifts affect the
network in different ways, which is worth noting in a practical
implementation of a DSD.

Reference [25] present a survey of methods of distribu-
tional shift detection, organizing methods according to a
taxonomy including anomaly detection, open-set recognition,
outlier detection, novelty detection, andOODdetection. They
highlight that a majority of distributional shift detection
methods revolve around detecting concept shift, that the
evaluation of DSDs is often lacking, and that existing
methods often neglect the more practical dimensions of the
problem.

Reference [26] perform an empirical study of sample-
based methods of detecting various distributional shifts.
They test various dimensionality-reducing techniques and
statistical tests, observing that label-classifiers with univari-
ate testing exhibit the best performance. Reference [27]
employ a similar method, but instead implement a measure
of the typicality of a given population of samples, noting
that the majority of samples in high-dimensional space is
distributed around a region referred to as the typical set.
Whereas the methods studied in [26] perform tests on the
features themselves, the test utilized in [27] utilize likelihood
estimates as produced by generative models. The DSDs
outlined in [26] and [27] are characterized by the utilization
of multiple samples, thus comparing the target distribution
with the source distribution somewhat directly.

Other works often consider approaches that do not require
multiple samples, and instead only rely on various properties
that can be observed in the inference of OOD samples.
Reference [28] implement a DSD based on the observation
that InD samples tend to exhibit higher probability scores than
OOD samples. Reference [29] investigate the use of gradients
towards distributional shift detection for classification, and
find that the gradient norm can be used to detect OOD
samples. Reference [30] builds upon the general idea of [28]
and implements a shift-detector that exploits the discrep-
ancy in softmax scores between InD and OOD data after

gradient-based perturbation [30], which they note delineates
InD and OOD data more efficiently than just considering
the softmax scores. These methods can, however, also
be implemented in a multiple-sample configuration. This
typically yields improved results, as the separability of OOD
and InD samples will increase as a result of the sampling
process and regression towards the mean.

Few of these works effectively distinguish between shifts
that affect the performance of model – therein sample
bias – and those that do not, however. Though sample-bias
indeed does constitute a distributional shift, and thus is often
correctly detected as such by conventional DSDs, we adopt
a more pragmatic view. The fundamental purpose of DSDs
are to serve as monitors in DL systems, and should thus
only yield alerts when the shift is liable to decrease the
overall system performance. This means that shifts that do
not affect performance generally should not be detected.
There are, however, some caveats to this. In systems that
utilize active learning, for instance, sample bias may indeed
adversely affect system performance inmuch the sameway as
neglecting to shuffle a dataset prior to gradient descent [31].
Systems with time-dependent networks such as Recursive
Neural Networks or Transformers may also be affected by
sample bias, in particular if the bias is dependent on time.
Suppose for instance if such a system receives a sequence of
identical data due to a sensor malfunction. This is likely to
induce some form of performance degradation, if not in terms
of correctness with respect to the data but in terms of overall
system performance, and should thus be detected. Therefore,
the practical implementation of DSDs must be done with
respect to a clearly defined set of system requirements,
including a delineation of what shifts should and should not
be detected. For the vision-systems we study in our work,
we identify sample-bias, label-bias, and temporal-bias as
benign shifts.

III. K-NEAREST NEIGHBOUR DISTRIBUTIONAL SHIFT
DETECTION
Pragmatically, the role of a DSD is to alert the system when
the Machine Learning (ML) system encounters data that it
cannot accurately predict. As the performance of a DNNs can
only be guaranteed under the assumption that the incoming
data is identically distributed to the training data, a simple
abstraction of this task is to detect when the incoming data is
not identically distributed to the training data, hence the need
for DSDs.

Formally, this can be expressed as determining the equiv-
alence of the training- and test-distributions: Ptrain(x, y) =
Ptest(x, y). As these distributions cannot realistically be
expressed in closed form, they must be approximated. DSDs
can thus be broadly decomposed into a component that
approximates the distributions, and a component which
compares their similarity. In Reference [26], for example,
this involved the extraction of features from input data as
an approximation method and various statistical tests as
similarity measures. In Reference [27], the distributions were
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approximated using generative models, and a statistical test
based on the notion of typical sets was used as the similarity
measure. Single-sample methods, such as ODIN [30],
GradNorm [29] and KL-divergence [28], do not explicitly
approximate the test distribution, and instead simply rely
on the expressiveness of their respective similarity-measures.
This can, however, be interpreted as an N = 1 sampling of
Ptest(x, y).
Though there is a large body of work focusing on

developing both novel similaritymeasures and approximation
methods [25], fewmethods account for the fact that a rigorous
estimation of either distribution requires the sampling of data,
nor do they consider the nature of the shift and its effect on
the neural network. For example, it is not given that there is
sufficient data to adequately sample Ptest(x, y), or the shift
may not affect the performance of the neural network at all,
and as a result not warrant deference.

To illustrate, assume that Ptrain(x, y) = Ptest(x, y).
Suppose that we introduce a binary variable s that influences
whether or not a datum is included in the sampling (s = 1)
or not included (s = 0) – i.e., a sample bias. The test
distribution is then given by Ptest(x, y|s). If s is independent
of x, this simply corresponds to randomly sampling the
distribution. Ifs is dependent on x, however, a covariate
shift will occur [24]. However, recall that since the sample
distribution is still drawn from Ptest(x, y), the samples are
by definition InD to (Ptrain(x, y). The changes in covariates
that the shift induced by the biased sampling are still wholly
represented in the training set. As a result, the performance
of the predictive model will be unaffected, and thus an
ideal DSDs should not consider this type of shift from a
purely pragmatic perspective. However, most of the existing
implementations of DSDs predict positively these benign
changes. Since sample-bias is practically unavoidable in
deployment scenarios, this severely reduces the potential
utility of DSDs.

Many systems, for instance autonomous vehicles, medical
imaging systems, and surveillance systems, operate on
streams of sensor data. For a system which implements a
sample-based DSD, all incoming data from these streams
would be considered as having undergone a distributional-
shift, as the data will not be sampled uniformly from the
overall distribution. Instead, it is sampled sequentially in time
and will thus exhibit a bias for covariates that depend on
time. In the case of an autonomous vehicle, for instance,
test batches would necessarily contain biases for the weather
conditions, the time of day, the type of traffic, the type of road,
traffic-obstacles, etc. For medical applications, there would
be a bias for patient demographics, imaging equipment,
or preparation routines. In all these cases, the model will
generally perform well as long as the data is included in
the distribution of the training data. Fig. 1 shows a PCA
projection of the effect of a few of the types of sample-bias
studied in our work on the latent representation of the data
for three datasets. In these plots, all of the test data is InD
and is clearly drawn from a region that is represented in the

dataset, but as the test data is not sampled uniformly from
thewhole dataset, statistical tests yield low p-values. Sample-
based DSDs would as a result classify this data as OOD.

To address these shortcomings, we formulate an extension
to the framework described in [26]. In addition to extracting
OOD-ness measures from a neural network and performing
statistical-testing, we also apply a sampling procedure such
that the statistical tests are computed only with respect to
the most similar samples in the training set, rather than
the training set as a whole. In particular, for each test-
datum, we select the k closest training samples that are
the closest in terms of l2 distance in the latent-space of a
suitably low-dimension layer in the representation model,
e.g. the penultimate layer of classifiers or the middle layer
of encoder-decoder architectures. Statistical tests are then
computed between theOOD-nessmeasures of these k-nearest
training samples and the test-samples, yielding de-biased
p-values. We refer to this framework as k-Nearest Neighbour
Distributional Shift Detection (kNNDSD). We summarize
this process in Algorithm 1.

Algorithm 1 The kNNDSD Algorithm. f (·) Denotes the
RepresentationModel Used to Compute Features and Encod-
ings, for Instance, a Classifier or a Generative Model. Xtrain

Represents the Training Data, and Xtest Represents a Batch
of Test Samples
Require: f (·), Xtrain, Xtest, k
Ensure: p_value

ztrain ← compute_encodings(f (·), Xtrain)
ztest ← compute_encodings(f (·), Xtest)
ytrain ← compute_features(f (·), Xtrain)
ytest ← compute_features(f (·), Xtest)
debiased_idxs← []
for i = 0 to len(ztest)− 1 do
dists← [(ztest[i]− ztrain)2 for i in range(len(ztest))]
kn_idxs← argpartition(dists, k)
debiased_idxs = concat(debiased_idxs, kn_idxs)

end for
p_value← ks_test(ytrain[kn_indices],ytest)
return p_value

Our method can be understood in a more general sense
through the lens of manifold learning [32], [33], [34].
The union of manifolds hypothesis describes how natural
data generally lie along a low-dimensional manifold within
the high-dimensional data. One can smoothly interpolate
between data within this manifold, as each dimension in the
space corresponds to some intrinsic property to the data. The
latent-space we use to extract neighbours can be interpreted
as a representation of this manifold, with semantically similar
datum lying in contiguous regions to one another. The nearest
neighbours of a datum thus represent the most semantically
similar data in the training distribution in terms of the learnt
features, that is, the features with respect to which the
biased samplingwas performed. Selecting nearest neighbours
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FIGURE 1. PCA visualisation of a kernel-density-estimation of the validation datasets for three of the datasets tested in our work alongside
batches of size N=100 sampled with differing bias types. Observe how biased data, though drawn from the same distribution, appear to be
distributed differently.

therefore explicitly de-biases the data with respect to the
manifold such that any remaining difference between the
samples can be attributed to the data being off-manifold and
thus being OOD. However, this assumes that the manifold
is sufficiently well represented by the training data, which,
as will be discussed in Section V, may not always hold.
Moreover, this method is also contingent on the assumption
that a given neural network has learnt a semantically coherent
manifold, which may not hold for all types of architecture or
training methods.

We further extend this framework so that more general
DSD-oriented distance metrics can be utilized, such as Grad-
Norm [29], ODIN [30], or KL-Divergence [28]. Although
these works evaluate their methods on a samples size of
N = 1, they can just as easily be incorporated into the
sample-based frameworks by treating the distance metrics
as features for the statistical tests. That is, whereas [26]
and [27] both perform statistical tests on the encodings
themselves, in our framework, we also implement statistical
tests on gradient-based or otherwise derived OOD-ness
measures. Finally, while the framework described in [26]
selects thresholds according to a set confidence interval (with
Bonferroni correction), we opt instead to compute thresholds
according to the minimum value found in the validation
dataset. The overall framework is summarized in Fig. 2.

IV. EXPERIMENTS
In our experiments, we evaluated the ability of several
popular DSDs to classify distributional shifts under different
forms of sample-bias. We evaluated these methods under
both covariate shifts and semantic shifts. We observed
that all distributional shift detectors exhibited significantly
reduced performance under sample-bias. Implementing our
proposed sample-selection step prior to tests was shown to
yield superior performance under sample-bias and equivalent
performance without sample-bias.

A. METHODOLOGY
We divide our experiments into two sections: In the first part,
we analyze the effect of our methods on the detection of

covariate shifts under sample-bias. We utilize both common
benchmarking datasets and datasets containing real-world
instances of distributional shift. To this end, we implement
sample-biases for labels, data order, and a synthetic sample-
bias. In the second section we analyze the effect of our
methods on the detection of semantic shifts under bias.
We evaluate several popular implementations of DSDs.

1) DATASETS
We evaluated DSDs on both real-world and benchmarking
datasets. In particular, we used the following datasets for our
analysis of covariate shifts:
• Benchmarking Datasets with additive noise

– CIFAR-10 and CIFAR100 [35], two benchmark-
ing datasets.

– Imagenette [36] - a small version of ImageNet.
• Datasets with organic distributional shifts

– NjordVid [37]: a fishing trawler video analytics
dataset, containing videos with various lighting-
and weather-conditions. The dataset contains both
temporal annotations and bounding boxes for four
classes, but we only consider it in the context of
object-detection.

– NICO++ [38], a domain-adaptation classification
benchmark organized by contexts and classes. The
dataset contains 60 classes, depicted in ten common
contexts. We treat each context as a distributional
shift.

– Polyp-Datasets: CVC-ClinicDB [39], Kvasir-
SEG [40] and Etis-LaribDB [41]: three polyp
segmentation datasets, collected from different
hospitals, with the first two being used as InD
datasets and Etis-LaribDB as the OOD dataset.

We constructed three folds for each dataset: a training fold,
which was used as a training set for the predictive models and
served as the reference population for the DSDs; a validation
fold, which was used as validation data for the predictive
models and InD data for the DSDs; and finally, an OOD
fold, which was curated such that the models we trained
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FIGURE 2. kNNDSD: A neural network first computes representation vectors and OOD-ness features for the training
data. This process is then repeated at runtime for incoming batches of data. For each datum in the batch, the
features corresponding to the k-nearest training-samples in the encoding space are extracted.
A Kolmogorov-Smirnoff test is then performed between these extracted features and the batch features, yielding a
p-value. This is then compared to a p-value threshold as bootstrapped from a known InD dataset, such as the
validation dataset. If the batch p-value is lower than the minimum p-value computed in the validation dataset, it is
considered OOD, and InD otherwise.

for each dataset exhibited higher loss-values for all samples
than in the InD folds. For NICO, NjordVid, and the Polyp
datasets, this involved partitioning the dataset according
to contexts, weather conditions, and hospital, respectively.
For the remaining datasets, we used additive uniform noise
sampled from [0, 0.2].
For our analyses under semantic shift, we utilize four

conventional benchmarking sets. Semantic shift detection
is typically considered a more difficult task than covariate
shift detection due to the tendency of neural networks to
yield high-confidence predictions on data with different
semantics [42]. This applies particularly to the so-called
near-OOD datasets, where the data appears similar, but are
semantically different:
• CIFAR10, with MNIST and EMNIST as OOD sets,

and CIFAR100 as a near-ood set.
• CIFAR100, with MNIST and EMNIST as OOD sets,

and CIFAR10 as a near-ood set.
• MNIST, with CIFAR100 and CIFAR10 as OOD sets,

and EMNIST as a near-ood set.
• EMNIST, withCIFAR100 andCIFAR10 as OOD sets,

andMNIST as a near-ood set.

2) SAMPLING-BIASES
We implement three forms of sampling-bias namely:
• Temporal Bias: test-samples are selected from a limited

timeframe in the test-dataset, i.e., subsequent frames in
video-datasets.

• Label Bias: test-samples are extracted according to
class.

• Synthetic sampling-bias: test-samples are extracted
specifically from a certain region of the distribu-
tion as determined by a K-Means clustering of the
representation-model encodings. The value of K is

TABLE 1. Overview of the datasets considered in our experiments and
the applicable types of sampling-bias.

selected according to the sample-size being used in the
experiments, so that every sample being tested is drawn
from the same cluster.

We also include results without sampling-bias. Table 1 shows
an overview over the datasets used, the shift types, and the
applicable sampling-biases. All bias types were implemented
as sampler objects in PyTorch.

3) METRICS
We follow convention and evaluate DSDs in terms of
classification metrics:
• Area Under Precision-Recall Curve (AUPR), which

measures the trade-off between precision and recall.
• Area Under Receiver-Operator Curve (AUROC), which

measures the trade-off between sensitivty and speci-
ficity.

• False Positive Rate (FPR), which estimates the likeli-
hood of an InD sample being classified as OOD.

• False Negative Rate (FNR), which estimates the likeli-
hood of an OOD sample being classified as InD.

• Balanced Accuracy (BA), which estimates the likelihood
of correct detection balanced across both classes, i.e.
1−fnr+1−fpr

2 .
We note, however, that threshold-free metrics – i.e., AUPR
and AUROC – do not account for the non-trivial problem of

VOLUME 12, 2024 59603



B. Torpmann-Hagen et al.: Robust Framework for Distributional Shift Detection Under Sample-Bias

selecting an optimal threshold. The domain of p-values for
the OOD samples is not known, except for that they should
have a lower p-value than any of the p-values generated for
the InD set. Asmentioned in Section III, we selected a p-value
threshold according to the lowest p-value in the validation set.
However, we provide these metrics primarily to give an idea
of the general seperability of the OOD and InD samples.

4) BASELINES
To adequately test our methods, we implement several
baselines:
• KS: the best-performing configuration studied in [26],

based on performing Kolmogorov-Smirnoff (KS)-tests
on a classifier/VAE’s latent-encodings.

• Typicality [27], a likelihood-based DSD based on the
notion of typical sets. In practice, this involves comput-
ing log-likelihood estimates of generative models.

• KL-divergence [28], a common baseline for DSDs
based on computing the cross-entropy between the
output logits and a uniform distribution.

• ODIN [30], which in addition to computing
KL-divergence also adds an adversarial perturbation to
the inputs.

• GradNorm [29], which computes the norm of the
gradients with respect to the KL-divergence term.

As these methods are primarily intended for classification
tasks, some extensions were necessary for evaluation on
the Njord and Polyp datasets, which, respectively, contain
object-detection annotations and segmentationmasks. For the
GradNorm, ODIN, and KL-divergence DSDs we replaced
the KL-divergence terms with loss-terms appropriate to the
respective tasks. We used k = 5 for all experiments selecting
neighbours in kNNDSD. This was selected on the basis of
results from initial testing, though we note that differing
values may yield differing results. In particular, higher values
of k mean that the data are compared to a larger number of
samples, which increases the effect of bias. Conversely, lower
values of kmean that the data are compared to a lower number
of samples, which often yields a less clear delineation simply
due to the low sample sizes. In practical contexts, k should
be adjusted in accordance with the size and variability of
the data set, although this is a step we neglected due to the
computational resources required.

The remaining baselines were implemented as described
in their respective works, with the only difference being the
use of statistical testing of multiple-samples as described in
Section III, as opposed to using the OOD-ness measures to set
thresholds directly or the bootstrapping procedure described
for Typicality testing. In particular, we treated the outputs of
all the DSDs as features for KS tests.

5) IMPLEMENTATION
We trained predictive models for all of our datasets to
serve as representation models for the DSD methods and
in order to verify the effect of the distributional shifts on
performance. We used ResNets [43] for all classification

datasets [44], DeepLabV3+ [45] for the polyp-datasets
as implemented in segmentation-models-pytorch [46], and
Ultralytics YoloV5 [47] for the Njord dataset. These models
were selected for their relative simplicity in terms of
implementation, popularity across domains, and decent
performance. The models were trained using a Nvidia
RTX3070 using PyTorch Lightning [48]. In the case that
these models did not contain intermediate layers with a
suitable dimensionality for use as a representation space,
we instead used a Variational Autoencoder (VAE). For the
Typicality tests, Glow was used as the representation model.
This required resizing data to 32× 32 in order for the model
and its representations to fit on the available memory on
our hardware. We observed that this yielded poor results on
the Njord and Polyp datasets on both baselines and with
kNNDSD during initial testing, and as a result we used a VAE
for these datasets, computing likelihoods using importance
sampling.

We implemented the sample-bias types as samplers, which
were used in the dataloaders during our experiments. For the
label-sampler, the data was sorted according to class-index,
such that each batch consisted of samples of identical class.
For the temporal bias, we sorted the samples according to the
frame number in the video, which was the default order due
to the naming conventions. For the synthetic bias, we sorted
the data in accordance with the cluster-index as returned from
the K-Means clustering.

As the DSDs studied in this work are sample-based, their
performance varies considerably depending on sample-size.
We evaluate theDSDs onN=30, 50, 100, 200, and 500.Where
not specified, our metrics were averaged across this range.

B. COVARIATE SHIFTS UNDER BIAS
In this section, we present the results of our experiments
on how DSDs behave for covariate shift prediction under
sample-bias.

Table 2 summarizes our results, showing metrics aggre-
gated over the tested sample-sizes and all three different
sample-bias configurations for each dataset. In general,
kNNDSD outperforms the baseline by a large margin in most
of the tested configurations. kNNDSD is less likely to classify
instances of sample-bias as distributional shift, and hence
reduces the FNR by a significant margin of every dataset
except NjordVid. The AUROC and AUPR scores also show
that kNNDSD often improves the separability of InD and
OOD samples. As discussed in Section IV-A, it should be
noted, however, that AUROC and AUPR are not necessarily
indicative of real-world performance due to the complexity
involved in finding an optimal threshold.

For the Njord dataset, all the DSDs we tested generally
performed poorly. kNNDSD outperforms the baselines for
the majority of the DSDs, but worse with ODIN and
equivalently poorly with typicality tests. We attribute this
to the challenging nature of the dataset. As the data is
collected from surveillance cameras, the sampled frames
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TABLE 2. Aggregated results across sample-sizes and bias-types. The arrows in the header denote whether lower is better (↓) or higher is better (↑).

often consist of multiple nearly identical frames, which can
skew the resulting p-values. The exception appeared to be
ODIN,which performedwell for large sample sizes, as shown
in Fig. 5. Interestingly, kNNDSD increased the FPR and
reduced the FNR for this dataset. One possible reason for
this is that the VAE that was used as the representation
model may not have learned a latent-space mapping which
sufficiently discriminated between the pertinent covariates,
and thus that the nearest-neighbour sampling proved less
effective for reducing false positives. The AUROC and
AUPR scores were generally increased with kNNDSD,
indicating improved seperability between the InD and OOD
classes.

Table 3 shows a breakdown of our results across sampling-
biases. Without sampling-bias - i.e. sampling randomly from
the entire dataset - all DSDs exhibit excellent performance,
often with perfect accuracy. With sampling-bias, however,
kNNDSD outperforms the baselines across all forms of bias.

Whereas data samples that on aggregate exhibit compa-
rable loss values can generate a wide range of p-values
with the baseline framework, kNNDSD yields comparable
p-values for data exhibiting similar losses. This is illustrated
for the KS-tests on the CIFAR10 dataset in Fig. 3. Sample-
biases induce a shift in the p-values, which cause InD data
to be classified as OOD, as they are under the p-value
threshold computed from the validation set. Although it can
be argued that it may be possible to circumvent this via amore
robust threshold selection procedure, for instance finding
the minimum p-value after a bootstrapping procedure under
several forms of bias - kNNDSD provides a simpler and more
robust solution. In addition to stabilizing the performance
under naive thresholding, kNNDSD also improves the
stability of the generated p-values. This is shown in Fig. 4.
Note that in addition to the three distributions being more
similar in the case of kNNDSD, the bias distributions also
exhibit lower variability.
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FIGURE 3. P-value vs. Loss plots for CIFAR10 across the sample-sizes. The p-values as generated by the baselines are greatly affected by sample-bias,
whereas kNNDSD is more robust to sample-bias. The red-line represents the threshold extracted from the InD validation set without sample-bias.

The DSDs tested in this paper are all sample-based. The
choice of sample-size affects both the computing overhead
and the performance of the DSDs, and is thus an important
consideration in practical scenarios. In some deployment
scenarios, large sample sizes may be impractical, whereas
in others, the added accuracy afforded by high sample sizes
may be more beneficial than rapid execution. To investigate
how kNNDSD behaved in this regard, we evaluated the
sensitivity of the performance of our methods to the sample-
size. We observed that the relationship between sample size
and performance aremore or less comparable across all tested
methods, with kNNDSD typically outperforming the vanilla
methods. For small sample-sizes, sample-bias is less of a
factor, hence why many of the DSDs perform well even at
low sample sizes. This is shown in Fig. 5. There does not
appear to be a significant difference between kNNDSD and
the baselines in this regard.

C. SEMANTIC SHIFTS UNDER BIAS
In this section, we present the results of our meth-
ods on semantic shifts. Overall, kNNDSD still generally

outperforms the baselines. Table 4 summarizes the results.
Aggregated across all data sets, kNNDSD exhibits con-
sistently lower FPRs and higher BAs, with improved
separability.

Table 5 shows metrics for kNNDSD and baselines for
each pair of datasets, aggregated over the DSD methods and
sample sizes. For the near-OOD CIFAR datasets, kNNDSD
often increased the FNR and performed somewhat worse than
the baselines. This is due to near-OOD samples often being
close to borderline InD-samples in both latent- and feature-
space. Thus, kNNDSD perceives these samples as similarly
distributed, while the baselines are more likely to classify
them correctly as they will be compared with the entire
distribution. However, all DSDs performed poorly in this
configuration, with the improved FPR for kNNDSD being
offset by the FNR and vice versa.

V. DISCUSSION
In this section, we discuss our results, present the limitations
of our work, and outline potential avenues of further work.

As we have shown, DSDs that utilize multiple samples
are liable to fail under sampling bias, which is arguably an
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TABLE 3. Breakdown of BAs by bias type, aggregated over sample-sizes.

unavoidable property of real-world systems, in particular on
streams of data. KNNDSD mitigates the effects of sample
bias to a significant extent and produces superior performance
in biased data while maintaining equivalent performance on
unbiased data. Our method is relatively simple to implement,
and is flexible enough to be utilized nearly with any sample-
based DSD method. In general, we conjecture kNNDSD
serves as a first step towards practically viable sample-based
distributional shift detectors.

However, there are some limitations to our work. For
example, we neglected to evaluate the various DSDs with
a wider diversity of representation models. We suspect that
the performance of our method - and more generally any

FIGURE 4. Distributions of p-values for kNNDSD and vanilla KN-tests
under sample-bias for CIFAR10.

TABLE 4. Results for semantic shift detection, aggregated over OOD-sets.

representation-based DSDs - could be further improved by
harnessingmore sophisticated representation-learning frame-
works, for instance contrastive-representation learning [49].
Fundamentally, all the methods we have tested in this work
are based on the representative ability of the neural network,
whether in terms of its gradients, its features, or its generative
capacity. Implementing neural networks such that special
care is taken towards generating salient representations
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FIGURE 5. BA across sample-sizes and datasets. The green lines represent kNNDSD and the blue lines represent vanilla methods. The bands represent
the span of p-values subject to the different tested sample-biases.

may improve the separability of InD and OOD samples,
and is, as a consequence, likely to yield improved results.
This may, in turn, facilitate a more robust selection of
neighbors, further improving the performance of kNNDSD.
Though investigating the extent thereof was beyond the scope
of this paper, harnessing modern representation-learning
frameworks and generative models is a promising direction
for further research.

Moreover, we trained only one model instance for each
DSD backbone and the corresponding dataset. Equivalently
trained models can encode widely different characteristics
[1], and these characteristics can exhibit different levels
of utility to distinguish between samples InD and OOD.
Our methodology could be improved by training multiple
representation model instances. Additionally, similar to how
ensembles improve the performance of classifiers, ensemble-
based DSDs may yield improved performance, in particular
in systems where ensembling is already utilized.

The potential utility of kNNDSD and sample-based DSDs
in general is limited by the high computational costs involved.
Although encodings of the predictive model can be used,
a surrogate model is sometimes necessary, such as a VAE
or other generative models. This effectively doubles the
inference requirements for the system as a whole, on top
of the computing time required for statistical testing and
the time required to compute OOD-ness measures. This is
further complicated by the need for computing the distances
between each sample and the training population as well
as the partial sorting of the resulting distances to find the
nearest neighbours. For a sample size of n = 100 and
encoding size m = 512, our method would on average take
approximately 17 seconds to compute each p-value on our
hardware. The capacity for real-time execution is as a result
somewhat limited for sample-based DSDs, and particularly
so for kNNDSD. Sample-based frameworks are also limited
by their memory usage. Performing statistical tests requires
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TABLE 5. Semantic Shift results split by OOD datasets aggregated over
sample sizes and DSDs methods.

storing features (and/or encodings) for all samples in the
training set. Storing the training-encodings for the Imagenet
dataset would, for instance, require approximately 53GB of
memory, should all encodings be stored.

Our methodology could also be further refined by testing
on a larger number of sample-bias and DSDs methods.
One can argue that our use of synthetic k-Means clustering
biasing is improper methodology, as kNNDSD explicitly
selects sample according to the nearest neighbours found
in this clustering space. We included an additional source
of bias for this reason on all datasets, however we concede
that additional biases would significantly increase the gen-
erality of our results. Furthermore, although we consider
our baseline choices to cover a wide range of different
approaches, we have not included any density-based DSDs
or reconstruction-based DSDs.

As most of the work on DSDs has been done in the context
of images, it may also be interesting to consider the viability
of these methods in non-image domains, for instance as a
means of detecting sensor-drift in ECG-data or other sensor-
based datasets. This may also be a useful case study with
regard to the relationship between anomaly-detection and
distributional-shift detection, as there is a significant body of
work focusing on anomaly-detection in time-series data.

There are also several means by which kNNDSD
could be further improved and refined beyond utilizing
more sophisticated representation models. The k-nearest-
neighbour sample selection we implemented is relatively
simple, for instance, and can probably be improved. One
could, for instance, constrain the selection of multiple
samples to a certain distance, further reducing the effect of
sample-bias. A more sophisticated alternative is to perform
kernel-density-estimation in the region around a given sample
and select samples from this neighbourhood in accordance
with the density. However, this would require a larger

population of InD-samples, though we hypothesize that this
can be achieved through data augmentation.

As discussed, the computational costs involved with
our framework are likely a limiting factor for practical
purposes. Optimizing kNNDSD such that real-time execution
is feasible is as a result a necessary prerequisite for practical
deployment. To this end, we plan to investigate more efficient
methods of sample-selection, for instance through explicit
modelling of the training manifold, as well as investigating
whether or not it is possible to replace the statistical tests
with a simpler measure, for instance cosine-similarity or
some other distance-metric, while maintaining or improving
performance. Finally, it may be possible to compute sparse
representations of the training distribution, as opposed
to storing the encodings themselves, reducing the overall
memory footprint of our methods.

We also plan to investigate extensions of our framework
in order to further improve the practical utility, for instance,
by generating explanations of the DSDs outputs. In this way,
users will not only be informed that the model is failing to
generalize to the new data, but also why the model is failing.
This may be achieved through, for instance, visualizing the
features in the encodings that correspond to the distributional
shift or by generating salience maps with respect to the most
anomalous encodings in the latent space.

We also observed that the relationship between the
p-values generated by our framework and the sample-losses
appeared relatively well-behaved. This suggests that it may
be possible to leverage our framework towards estimating
the loss of arbitrary samples, significantly improving both
the interpretability of DSDs and the transparency of the ML
system in question. We plan on investigating this in further
detail.

VI. CONCLUSION
In this paper, we have investigated the effect of sampling-bias
on DSDs. We showed that existing methods fail under
sampling-bias, and we proposed a simple extension that
dampens these effects by limiting the source populations
used in statistical tests to the nearest neighbours of the test
population. We applied these methods on several datasets
with various forms of distributional-shift and sampling-bias,
and observed that our methods outperform the baseline
by a significant margin when the dataset is subject to
sampling-bias under both covariate and semantic shifts,
with improvements in balanced accuracy typically ranging
between 0.1 and 0.2. FPRs are halved when aggregated across
all bias types, and often eliminated altogether on biased data.
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