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Abstract

IMPORTANCE Lumber disc herniation surgery can reduce pain and disability. However, a sizable
minority of individuals experience minimal benefit, necessitating the development of accurate
prediction models.

OBJECTIVE To develop and validate prediction models for disability and pain 12 months after
lumbar disc herniation surgery.

DESIGN, SETTING, AND PARTICIPANTS A prospective, multicenter, registry-based prognostic
study was conducted on a cohort of individuals undergoing lumbar disc herniation surgery from
January 1, 2007, to May 31, 2021. Patients in the Norwegian Registry for Spine Surgery from all
public and private hospitals in Norway performing spine surgery were included. Data analysis was
performed from January to June 2023.

EXPOSURES Microdiscectomy or open discectomy.

MAIN OUTCOMES AND MEASURES Treatment success at 12 months, defined as improvement in
Oswestry Disability Index (ODI) of 22 points or more; Numeric Rating Scale (NRS) back pain
improvement of 2 or more points, and NRS leg pain improvement of 4 or more points. Machine
learning models were trained for model development and internal-external cross-validation applied
over geographic regions to validate the models. Model performance was assessed through
discrimination (C statistic) and calibration (slope and intercept).

RESULTS Analysis included 22 707 surgical cases (21 161 patients) (ODI model) (mean [SD] age, 47.0
[14.0] years; 12 952 [57.0%] males). Treatment nonsuccess was experienced by 33% (ODI), 27%
(NRS back pain), and 31% (NRS leg pain) of the patients. In internal-external cross-validation, the
selected machine learning models showed consistent discrimination and calibration across all 5
regions. The C statistic ranged from 0.81 to 0.84 (pooled random-effects meta-analysis estimate,
0.82; 95% CI, 0.81-0.84) for the ODI model. Calibration slopes (point estimates, 0.94-1.03; pooled
estimate, 0.99; 95% CI, 0.93-1.06) and calibration intercepts (point estimates, −0.05 to 0.11; pooled
estimate, 0.01; 95% CI, −0.07 to 0.10) were also consistent across regions. For NRS back pain, the C
statistic ranged from 0.75 to 0.80 (pooled estimate, 0.77; 95% CI, 0.75-0.79); for NRS leg pain, the C
statistic ranged from 0.74 to 0.77 (pooled estimate, 0.75; 95% CI, 0.74-0.76). Only minor
heterogeneity was found in calibration slopes and intercepts.

CONCLUSION The findings of this study suggest that the models developed can inform patients and
clinicians about individual prognosis and aid in surgical decision-making.
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Key Points
Question Can machine learning models

accurately predict patient disability and

pain following lumbar disc

herniation surgery?

Findings In this prognostic study

including 22 707 patients, machine

learning models were developed and

validated in large-scale, nationally

representative data for treatment

success or nonsuccess in disability and

pain 12 months after lumbar disc

herniation surgery. The models showed

good discrimination and calibration.

Meaning The findings of this study

suggest that algorithms can inform

about individual prognosis and aid in

surgical decision-making to ultimately

reduce ineffective and costly spine care.
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Introduction

The volume of lumbar spine surgery has increased considerably over the past decades, placing large
costs on health care systems.1-3 Lumbar disc herniation surgery effectively reduces disability and
pain in most patients, but a subset experience minimal benefit.4-6 In Scandinavia, 24% to 32% of
patients do not achieve an important improvement in pain-related disability 1 year postoperatively.7

In most cases, the indication for surgery is relative. Therefore, shared decision-making, appraising
both potential treatment risks and benefits, is essential to minimize ineffective and costly spine
care.8,9 Providing precise probabilities of outcomes based on individual patient characteristics in a
presurgical setting would allow clinicians to manage patients’ expectations before surgery and help
patients make an informed choice about surgery.

Prediction models for disability and pain improvements following degenerative spine surgery
have been developed; however, most studies including patients with lumbar disc herniation have
limited generalizability due to a low number of patients from single surgical centers.10-15 Population-
based spine registries with near complete national coverage hold a unique potential for prognostic
modeling due to their comprehensive inclusion of a broad range of presurgical variables. Moreover,
they reflect clinical practice settings and account for the uniqueness of a specific patient
population.16,17

The volume and complexity of data available in national spine registries provide opportunities
to develop better prediction models, which is necessary to improve quality of spine care.16 Machine
learning algorithms are powerful tools for analyzing large amounts of data and have gained traction
in recent years, but their use for outcome prediction in spine surgery remains nascent.18 The hope is
that machine learning based on large and representative data can predict outcomes with high
accuracy and consequently assist clinicians and patients in weighing the risks and benefits of surgical
intervention. Therefore, the purpose of this study was to develop and validate machine learning
models for predicting improvement in disability and pain 12 months after lumbar disc herniation
surgery. We used internal-external cross-validation to evaluate generalizability over 4 geographic
regions in Norway and a separate cluster for private hospitals.

Methods

Design
This was a multicenter study using prospectively collected data from adults undergoing surgery for
lumbar disc herniation included in the Norwegian Registry for Spine Surgery (NORspine). We
followed the methodologic framework proposed by the Prognosis Research Strategy group19 and
report the study in line with the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.20 This study is part of the AID-Spine
project, which has been approved by the ethics committee of the Health Region of South-East
Norway. Written informed consent was obtained from all patients in the NORspine, and the Data
Protection Authority of Norway approved the registry protocol.

Data Source and Patient Population
NORspine is a comprehensive clinical registry for degenerative spine surgery designed for quality
control and research. The register is mandatory and had a coverage of 100% at the surgical unity
level in 2021 (40 centers). The individual-level completeness rate was 81% for lumbar spine surgery
in 2021.21 All patients included in the NORspine registry who had undergone lumbar discectomy from
January 1, 2007, to May 31, 2021, were identified and screened for eligibility. Repeat surgeries were
included as new cases if performed more than 90 days after the index surgery. Reoperation within
90 days is considered a complication in the NORspine registry, and thus not recorded as a new case.
The registry also excludes patients who undergo an operation for fractures, trauma, or cancer.21

Patients with cauda equina syndrome were excluded from the current study.
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The NORspine data collection process comprised a preoperative form including patient-
reported outcomes to be completed by the patients at the time of surgical admission (baseline).
Information regarding diagnosis, previous lumbar spine surgery, comorbidity, imaging findings, and
surgical procedure were recorded by the surgeon on a standardized form. At 12 months
postoperatively, follow-up questionnaires including patient-reported outcomes were distributed by
mail to the patients.

Outcomes
The outcomes included measured patient improvements using the Oswestry Disability Index (ODI)22

and Numeric Rating Scale (NRS)23 for back pain and leg pain from baseline to 12 months. The ODI
was the primary outcome; it is a 10-item score from 0 (none) to 100 (maximum disability)
encompassing limitations in various activities of daily living.22 The NRS measures pain intensity
during the last week on an 11-point scale, with 0 representing no pain and 10 the worst
imaginable pain.23

The outcomes were operationalized as treatment success, with study-specific calculations of
the cutoffs for success. The thresholds were arrived at using the anchor-based predictive modeling
method,24 adjusted for the proportion of patients reporting improvement.25 As the dichotomized
anchor response, we used a 7-point Global Perceived Effect scale,26 with the cutoff for success and
nonsuccess set between patients responding they were much improved vs slightly improved. The
cutoff scores were: ODI, 22 points; NRS back pain, 2 points; and NRS leg pain, 4 points improvement
from baseline to 12 months.

Predictors
We used all potential preoperative predictors available in the NORspine registry (eTable 1 in
Supplement 1 provides a detailed description). In short, 25 features (predictor variables) were
included, covering patient demographic characteristics, comorbidity, clinical characteristics,
analgesics use, and type of operation. Only preoperative features were included, given our aim of
improving the selection of surgical candidates.

Sample Size
Our sample size was restricted to available NORspine data. An a priori sample size calculation was
performed to evaluate the adequacy of the data set and guide how many predictors could be
included.27 We assumed an event rate of 30% (nonsuccess at 12 months),7 a C statistic of 0.75 based
on a recent systematic review,28 and a maximum number of 50 predictor parameters. Based on
these inputs, a sample size of 2551 patients would be required for the model development,
corresponding to 766 events and an event per parameter of 15.3. The pmsampsize package in Stata,
version 17.1 (StataCorp LLC) was used for the calculations,27 with Cox-Snell R2 value estimated from
the C statistic.29 While the number of predictor parameters for machine learning likely exceeds that
for regression, our sample size far exceeds the minimum requirement estimate for regression-
based prediction models.27

Data Cleaning and Quality Checks
The NORspine registry data quality is periodically assessed by the registry owner to detect systematic
or random errors in the data entry.30 We performed further data quality checks during data cleaning,
including assessment of potential duplicate entries, outliers, the extent of missing data, and presence
of systematically missing variables within and across clusters. All patient characteristics and model
predictors were determined at the time of surgical admission. The same eligibility criteria and
characteristic determination methods were applied to all clusters.

JAMA Network Open | Surgery Machine Learning Models to Predict Disability and Pain After Lumbar Disc Herniation Surgery

JAMA Network Open. 2024;7(2):e2355024. doi:10.1001/jamanetworkopen.2023.55024 (Reprinted) February 7, 2024 3/14

Downloaded from jamanetwork.com by UiT The Arctic University of Norway user on 07/29/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.55024&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.55024


Statistical Analysis
Data analysis was performed from January to June 2023. We calculated descriptive statistics for
baseline characteristics, overall and for each cluster separately. We applied multiple imputation with
chained equations to handle missing baseline and outcome data, which were assumed to be missing
at random, with 50 imputed data sets generated. The imputation models included all features and
outcomes, performed separately for each cluster to allow the distribution of the imputed values to
differ among clusters.31 Imputations were assessed for consistency by comparing distributions of
imputed values with the complete data. The predictive performance measures were estimated in
each imputed data set separately before being combined across imputations using the Rubin rule.32

Seven supervised machine learning algorithms were trained to develop the prediction model:
random forest, logistic regression, linear discriminant analysis, multilayer perceptron, gradient
boosting, extra trees, and extreme gradient boosting. Preprocessing steps involved scaling of
continuous variables (minimum-maximum normalization) and 1-hot encoding of categorical
variables. All features were included, ie, no variable selection techniques were used. Continuous
variables were kept continuous to avoid loss of prognostic information. Hyperparameters were tuned
using a grid search with 5-fold cross-validation (eTable 2 in Supplement 1). The best algorithm for
each outcome was estimated based on model discrimination using the C statistic. We assessed
apparent performance (using the same data in which the model was developed), quantified with the
C statistic.

Internal-external cross-validation was used to evaluate the derived prediction models to give a
more realistic estimate of model performance and heterogeneity in performance across regions.33,34

Internal-external cross-validation involves a nonrandom split of data based on clusters, in our case,
4 geographic regions corresponding to the 4 Norwegian Regional Health Authorities and an
additional cluster for private hospitals. A single internal-external cross-validation cycle separates the
data into a development cohort and validation cohort, with 4 of 5 clusters forming the development
cohort and reserving the other cluster for validation. The process was repeated 5 times, each time
reserving a different cluster for validation.

We calculated C statistics, positive predictive value, negative predictive value, calibration
slopes, and calibration intercepts in each cluster. Overall performance measures with 95% CIs
(derived using the Hartung-Knapp-Sidik-Jonkman variance correction) and 95% prediction intervals
were also summarized across clusters using a random-effects meta-analysis.35,36 We further present
calibration plots with comparison of observed to predicted risk for each model overall and by
validation cluster (created using pmcalplot on Stata), generated separately in each imputed data set
and checked for consistency across imputations. Clinical utility was examined using decision curve
analysis by comparing the prediction models against blanket treatment strategies to treat all or to
treat none at varying risk thresholds.37 Shapley Additive Explanations values were calculated for all 3
prediction models to investigate feature importance.38 The machine learning algorithms were
implemented using Python 3.8.13 and Scikit-learn Python libraries. Stata was used for data cleaning
and multiple imputation. As a sensitivity analysis, results obtained from using imputed data were
compared with those of complete case analysis for each outcome.

Results

Of 56 963 surgical cases screened, we identified 22 707 surgical cases (21 161 patients) (mean [SD]
age, 47.0 [14.0] years; 12 952 [57.0%] males; 9755 females [43.0%]) who underwent operations for
lumbar disc herniation eligible for inclusion in our primary analysis (Figure 1). Baseline characteristics
of the total study population and stratified by cluster for the ODI model are summarized in the Table.
The analysis for NRS back pain included 23 804 cases and, for NRS leg pain, 22 691 cases. The
proportions of cases experiencing treatment nonsuccess were 33% (ODI), 27% (NRS back pain), and
31% (NRS leg pain).
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No features had more than 6% missing values. The proportions with missing outcome data
were 35% (ODI) and 37% (NRS back pain and NRS leg pain).

Model Development
The predictive performance of the 7 different machine learning algorithms was compared using
estimates of the random effects meta-analysis per algorithm and outcome. The difference between
the maximum and minimum C statistic was only 0.01 for each outcome. However, calibration
intercepts and slopes varied substantially across the algorithms (eTable 3 in Supplement 1). Extreme
gradient boosting had the highest discriminatory performance for each outcome while also showing
excellent calibration.

Apparent Predictive Model Performance
The ODI model was able to discriminate between patients with treatment success and nonsuccess
with an apparent C statistic of 0.83 (95% CI, 0.82-0.84). The C statistic was 0.78 (95% CI, 0.77-0.78)
for NRS back pain and 0.76 (95% CI, 0.76-0.77) for NRS leg pain.

Internal-External Cross-Validation
Model discrimination (C statistic) and calibration metrics (slope and intercept) from internal-external
cross-validation of the ODI model are shown in Figure 2. C statistics were similar across regions, with
point estimates ranging from 0.81 to 0.84 (pooled random-effects meta-analysis estimate, 0.82;
95% CI, 0.81-0.84). Positive predictive values ranged from 0.81 to 0.88 (pooled estimate, 0.86; 95%
CI, 0.82-0.89) and negative predictive values ranged from 0.51 to 0.63 (pooled estimated, 0.58;
95% CI, 0.52-0.64) (eTable 4 in Supplement 1). Calibration slopes were consistent across regions
(point estimates, 0.94-1.03; pooled estimate, 0.99; 95% CI, 0.93-1.06). There was minor
heterogeneity in calibration intercept across regions, likely due to some variation in outcome
incidence between regions (point estimates, −0.05 to 0.11; pooled estimate, 0.01; 95% CI, −0.07 to
0.10). The overall calibration plot for the ODI model is shown in Figure 3A and by region in eFigure 2A
in Supplement 1.

Figure 1. Flow Diagram of Surgical Cases Included in the Analysis

Cases excluded for each model
1988 ODI model baseline score <22

891 NRS back pain model baseline score <2
2004 NRS leg pain model baseline score <4

32 268 Cases excluded
31 919 Other procedure

349 Cauda equina syndrome

Southern and Eastern

6033 NRS leg pain

6058 ODI
6304 NRS back pain

Western

4809 NRS leg pain

4788 ODI
4980 NRS back pain

Central

4269 NRS leg pain

4311 ODI
4511 NRS back pain

Northern

2133 NRS leg pain

2138 ODI
2205 NRS back pain

Private hospitals

5447 NRS leg pain

5412 ODI
5804 NRS back pain

Cases included  for each model
22 707 ODI model
23 804 NRS back pain model
22 691 NRS leg pain model

24 695 Eligible cases

56 963 Cases screened

NRS indicates Numeric Rating Scale; ODI, Oswestry Disability Index.
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Table. Study Population for the ODI Model

Characteristic

No. (%)

Development, total
(n = 22 707)

Cluster

Southern and Eastern
(n = 6058)

Western
(n = 4788)

Central
(n = 4311)

Northern
(n = 2138)

Private hospitals
(n = 5412)

ODIa

Treatment success 9934 (66.9) 2363 (60.4) 2032 (65.8) 1966 (67.3) 1086 (72.6) 2487 (72.3)

Missing 7848 (34.6) 2145 (35.4) 1699 (35.5) 1388 (32.2) 643 (30.1) 1973 (36.5)

Sex

Male 12 952 (57.0) 3139 (51.8) 2540 (53.1) 2339 (54.3) 1247 (58.3) 3687 (68.1)

Female 9755 (43.0) 2919 (48.2) 2248 (46.9) 1972 (45.7) 891 (41.7) 1725 (31.9)

Age, mean (SD), y 47.0 (14.0) 47.3 (14.3) 47.9 (14.9) 48.3 (14.7) 45.3 (13.2) 45.6 (12.2)

BMI, mean (SD) 27.0 (4.5) 27.2 (4.7) 26.9 (4.5) 27.2 (4.5) 27.3 (4.7) 26.7 (4.0)

Missing 1327 (5.8) 253 (4.2) 113 (2.4) 500 (11.6) 84 (3.9) 377 (7.0)

Nonnative language speaker 1617 (7.2) 541 (9.0) 393 (8.3) 221 (5.2) 120 (5.6) 342 (6.4)

Missing 129 (0.6) 45 (0.7) 29 (0.6) 28 (0.7) 4 (0.2) 23 (0.4)

Marital status, single 5583 (24.8) 1670 (27.9) 1216 (25.6) 1017 (23.9) 539 (25.4) 1141 (21.2)

Missing 205 (0.9) 71 (1.2) 33 (0.7) 55 (1.3) 17 (0.8) 29 (0.5)

Smoker 5797 (25.8) 1604 (26.8) 1273 (26.8) 1134 (26.6) 606 (28.7) 1180 (22.0)

Missing 216 (1.0) 71 (1.2) 33 (0.7) 55 (1.3) 17 (0.8) 29 (0.5)

Education

Lower secondary school 3255 (14.5) 902 (15.1) 790 (16.7) 692 (16.3) 375 (17.7) 496 (9.2)

Upper secondary school 10 575 (47.1) 2793 (46.7) 2237 (49.3) 2072 (48.8) 991 (46.8) 2392 (44.5)

University (1-3 y) 4606 (20.5) 1192 (20.0) 855 (18.1) 791 (18.6) 385 (18.2) 1383 (25.7)

University (≥4 y) 4003 (17.8) 1089 (18.2) 747 (15.8) 692 (16.3) 368 (17.4) 1107 (20.6)

Missing 268 (1.2) 82 (1.4) 69 (1.4) 64 (1.5) 19 (0.9) 34 (0.6)

Work status

Working/student 5943 (26.8) 1498 (25.4) 1168 (24.8) 972 (23.2) 514 (24.7) 1791 (34.0)

Retirement ageb 2277 (10.3) 676 (11.5) 618 (13.1) 545 (13.0) 156 (7.5) 282 (5.4)

Sick leave 10 871 (49.1) 2717 (46.1) 2165 (45.9) 1972 (47.1) 1103 (53.0) 2914 (55.4)

Disability pension 3058 (13.8) 1005 (17.1) 767 (16.3) 702 (16.8) 309 (14.8) 275 (5.2)

Missing 558 (2.5) 162 (2.7) 70 (1.5) 120 (2.8) 56 (2.6) 150 (2.8)

Litigation issuec 1723 (7.6) 508 (8.4) 320 (6.7) 324 (7.5) 168 (7.9) 403 (7.5)

Anxiety or depressiond 8844 (39.8) 2444 (41.4) 1942 (41.3) 1801 (42.7) 873 (41.5) 1784 (33.7)

Missing 490 (2.2) 158 (2.6) 90 (1.9) 91 (2.1) 34 (1.6) 117 (2.2)

Comorbidities

0 16 922 (74.5) 4366 (72.1) 3277 (68.4) 3098 (71.9) 1709 (79.9) 4472 (82.6)

1 3879 (17.1) 1153 (19.0) 922 (19.3) 805 (18.7) 296 (13.8) 703 (13.0)

2 1363 (6.0) 379 (6.3) 406 (8.5) 291 (6.8) 100 (4.7) 187 (3.5)

≥3 543 (2.4) 160 (2.6) 183 (3.8) 117 (2.7) 33 (1.5) 50 (0.9)

ASA grade ≥3 1489 (6.6) 456 (7.6) 359 (7.6) 441 (10.4) 90 (4.4) 143 (2.7)

Missing 297 (1.3) 49 (0.8) 34 (0.7) 82 (1.9) 71 (3.3) 61 (1.1)

ODI (0-100), mean (SD) 48.6 (17.2) 48.2 (16.8) 50.9 (17.5) 50.3 (17.8) 52.5 (18.7) 44.3 (15.2)

Missing 178 (0.8) 57 (0.9) 34 (0.7) 23 (0.5) 8 (0.4) 56 (1.0)

NRS pain intensitye

Back pain 6.6 (2.4) 6.5 (2.30 6.8 (2.3) 6.7 (2.3) 6.9 (2.4) 6.1 (2.3)

Missing 682 (3.0) 217 (3.6) 156 (3.3) 120 (2.8) 46 (2.2) 143 (2.6)

Leg pain 7.2 (2.1) 7.1 (2.1) 7.4 (2.0) 7.3 (2.1) 7.5 (2.1) 6.9 (2.0)

Missing 666 (2.9) 206 (3.4) 157 (3.3) 130 (3.0) 40 (1.9) 133 (2.5)

EQ-5D, mean (SD) 0.48 (0.22) 0.49 (0.22 0.45 (0.22) 0.47 (0.22) 0.44 (0.23) 0.53 (0.19)

Missing 950 (4.2) 307 (5.1) 191 (4.0) 197 (4.6) 62 (2.9) 193 (3.6)

EQ VAS (0-100), mean (SD) 43.2 (21.1) 44.1 (21.1) 40.6 (21.0) 42.2 (21.5) 41.8 (22.1) 45.9 (20.1)

Missing 1278 (5.6) 396 (6.5) 306 (6.4) 285 (6.6) 83 (3.9) 208 (3.8)

(continued)
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For NRS back pain and NRS leg pain, discrimination was somewhat lower, with C statistics
ranging from 0.75 to 0.80 (pooled estimate, 0.77; 95% CI, 0.75-0.79) for NRS back pain and 0.74 to
0.77 (pooled estimate, 0.75; 95% CI, 0.74-0.76) for NRS leg pain (eFigure 1 in Supplement 1).
Predictive values are reported in eTable 4 in Supplement 1. The calibration slope was also similar
across regions, ranging from 0.96 to 1.09 for NRS back pain and 0.91 to 1.10 for NRS leg pain. After
meta-analysis, the summary calibration slope was 1.01 (95% CI, 0.94-1.07) for NRS back pain and 1.02
(95% CI, 0.92-1.12) for NRS leg pain. Calibration intercept was consistent across regions for NRS back
pain (point estimate, −0.06 to 0.08; pooled estimate, 0.00; 95% CI, −0.07 to 0.08). For NRS leg pain

Table. Study Population for the ODI Model (continued)

Characteristic

No. (%)

Development, total
(n = 22 707)

Cluster

Southern and Eastern
(n = 6058)

Western
(n = 4788)

Central
(n = 4311)

Northern
(n = 2138)

Private hospitals
(n = 5412)

Back pain, mo

<3 4196 (19.2) 765 (13.1) 928 (19.9) 848 (20.7) 608 (29.3) 1047 (20.2)

3-11 9797 (44.8) 2625 (45.1) 2046 (43.8) 1730 (42.1) 800 (38.5) 2596 (50.0)

12-24 3166 (14.5) 996 (17.1) 678 (14.5) 612 (14.9) 271 (13.0) 609 (11.7)

>24 4715 (21.6) 1441 (24.7) 1015 (21.8) 917 (22.3) 399 (19.2) 943 (18.2)

Missing 833 (3.7) 231 (3.8) 121 (2.5) 204 (4.7) 60 (2.8) 217 (4.0)

Leg pain, mo

<3 5547 (25.6) 1055 (18.3) 1258 (27.3) 1101 (27.1) 773 (37.6) 1360 (26.3)

3-11 10 813 (49.9) 2962 (51.5) 2232 (48.4) 1915 (47.1) 847 (41.2) 2857 (55.2)

12-24 2760 (12.7) 917 (15.9) 597 (12.9) 524 (12.9) 228 (11.1) 494 (9.5)

>24 2548 (11.8) 823 (14.3) 527 (11.4) 524 (12.9) 209 (10.2) 465 (9.0)

Missing 1039 (4.6) 301 (5.0) 174 (3.6) 247 (5.7) 81 (3.8) 236 (4.4)

Analgesic use

Monthly 3964 (17.8) 1044 (17.6) 728 (15.4) 726 (17.2) 322 (15.2) 1144 (21.5)

Weekly 2883 (12.9) 770 (13.0) 516 (10.9) 496 (11.7) 234 (11.0) 867 (16.3)

Daily 15 471 (69.3) 4122 (69.4) 3478 (73.7) 3007 (71.1) 1566 (73.8) 3301 (62.1)

Missing 389 (1.7) 122 (2.0) 66 (1.4) 82 (1.9) 19 (0.9) 100 (1.9)

Paresis grade

Normal 18 469 (81.3) 5217 (86.2) 3867 (80.8) 3635 (84.3) 1480 (69.2) 4270 (78.9)

Mild 2683 (11.8) 504 (8.3) 593 (12.4) 378 (8.8) 433 (20.3) 775 (14.3)

Severe 1555 (6.9) 337 (5.6) 328 (6.9) 298 (6.9) 225 (10.5) 367 (6.8)

Previous surgery

0 17 469 (77.5) 4765 (79.2) 3626 (75.9) 3135 (73.5) 1704 (80.4) 4239 (79.0)

1 3924 (17.4) 991 (16.5) 863 (18.1) 803 (18.8) 334 (15.8) 933 (17.4)

≥2 1160 (5.1) 261 (4.3) 291 (6.1) 330 (7.7) 82 (3.9) 196 (3.7)

Missing 154 (0.7) 41 (0.7) 8 (0.2) 43 (1.0) 18 (0.8) 44 (0.8)

Microdiscectomy 21 255 (93.6) 5523 (91.2) 4338 (90.6) 4065 (94.3) 2114 (98.9) 5215 (96.4)

Surgical levels ≥2 1263 (5.6) 466 (7.7) 246 (5.1) 124 (2.9) 91 (4.3) 336 (6.2)

Emergency surgery 4397 (19.5) 1022 (17.1) 1366 (28.6) 1018 (23.7) 921 (43.3) 70 (1.3)

Missing 131 (0.6) 68 (1.1) 12 (0.3) 16 (0.4) 10 (0.5) 25 (0.5)

Abbr eviations: ASA, American Society of Anesthesiologists; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); NRS, Numeric Rating Scale;
ODI, Oswestry Disability Index.
a A 10-item score from 0 (none) to 100 (maximum disability) encompassing limitations in various activities of daily living. Treatment success is defined based on achievement of the

minimal important change (�22 points improvement from baseline).
b Individuals receiving retirement/age pension. While the retirement age in Norway is 67 years, individuals have the flexibility to decide when they wish to start receiving their

retirement pension.
c Pending medical or insurance claim or litigation issue.
d EQ-5D questionnaire; 5th item, moderate to severe (3L) or moderate to extreme (5L).
e The NRS measures pain intensity during the last week on an 11-point scale, with 0 representing no pain and 10 the worst imaginable pain
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(point estimate, −0.09 to 0.14; pooled estimate, −0.01; 95% CI, −0.14 to 0.11), the overall risk was
underestimated in private hospitals (0.14; 95% CI, 0.03-0.25). The NRS back pain and NRS leg pain
overall calibration plots are shown in Figure 3B and C and by region in eFigure 2B and C in
Supplement 1.

Decision curve analyses in the validation sets from internal-external validation are shown in
eFigure 3 in Supplement 1. For all outcomes, the prediction model had higher net benefit than the
treat-all or treat-none strategies across a broad range of threshold probabilities.

Feature Importance
The most important features for treatment success on the ODI were higher baseline score of the
outcome, shorter duration of back pain, no previous surgery, and no symptoms of anxiety and
depression (Figure 4). The same features were also among the most influential for NRS back pain and
NRS leg pain (eFigure 4 and eFigure 5 in Supplement 1).

Sensitivity Analyses
Consistent results were found for all 3 models in sensitivity analyses including only surgical cases with
complete data (n = 11 461 for ODI, n = 11 944 for NRS back pain, and n = 11 321 for NRS leg pain).
Calibration slopes, calibration intercept, and C statistics are shown in eFigure 6 in Supplement 1.
(eFigure 6 in Supplement 1).

Figure 2. Internal-External Cross-Validation in 5 Validation Cohorts and the Overall Estimation Across Validation Cohorts for Oswestry Disability Index
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Central 0.83 (0.82 to 0.85) 1.02 (0.91 to 1.13) –0.00 (–0.09 to 0.09)

Northern 0.84 (0.82 to 0.86) 1.00 (0.81 to 1.18) 0.01 (–0.14 to 0.16)

Private 0.81 (0.80 to 0.83) 0.94 (0.81 to 1.06) 0.11 (0.03 to 0.20)

Overall, REML + HKSJ 0.82 (0.81 to 0.84) 0.99 (0.93 to 1.06) 0.01 (–0.07 to 0.10)

With estimated 95%
predictive interval

(0.78 to 0.86) (0.92 to 1.07) (–0.18 to 0.21)

REML+ HKSJ indicates restricted maximum likelihood + Hartung-Knapp-Sidik-Jonkman.

Figure 3. Assessment of Overall Calibration
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Discussion

In this prognostic study, we developed and validated machine learning models for prediction of
treatment success or nonsuccess 12 months after lumbar discectomy. Internal-external cross-
validation showed that our models had consistently good calibration when applied to the different
geographic regions and private hospitals, and good discrimination with C statistics 0.81 or greater for
disability and 0.74 or greater for pain. The models integrated 25 routinely available preoperative
features and should be readily implementable in standard clinical settings at the point of surgical
decision-making.

The discriminative performance of our models is generally similar to or better than earlier
prediction models for disability and pain improvement following lumbar discectomy.10,11,14 Staartjes
et al11 developed a deep learning–based ODI prediction model, with a C statistic of 0.84. However,
they only included 422 patients from a single-center registry and did not assess calibration. Similarly,
Halicka et al14 developed disability and pain prediction models, including both patients with disc
herniation and spinal stenosis. Although the models demonstrated good calibration in temporal
validation data, the discriminatory ability was acceptable at best (C statistics from 0.62 to 0.72). In
contrast, disability and pain prediction models with good discrimination (C statistics from 0.79 to
0.83) have been developed using data from the Danish national registry for spine surgery
(DaneSpine).10 DaneSpine and NorSpine are very similar in terms of patient inclusion and data
collection processes,7 but the present study is an important extension of this previous work. We used
data from the whole NORspine registry (40 centers and 22 707 patients), compared with only
patients from a single center of the DaneSpine (n = 1968 patients). We also used internal-external
cross-validation to provide insights into heterogeneity and evaluate the generalizability of
the models.

In the pursuit to develop the best prediction models, 7 machine learning algorithms were
trained and tested. The algorithms showed similar discriminatory ability; however, random forest and

Figure 4. Shapley Additive Explanations (SHAP) Summary Plot of Variable Importance
for the Oswestry Disability Index Model
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extra trees underperformed in terms of calibration with intercepts far below 0 and slopes above 1
across all models (eTable 3 in Supplement 1). Overall, these findings are consistent with a study
exploring the added value of machine learning algorithms to regression models for prognostication
in traumatic brain injury.39 A 2019 systematic review also found no evidence of superior performance
of machine learning over logistic regression in studies with relatively small sample sizes (median
n = 1250).40 While machine learning is known to be data hungry and thrive with high-dimensional
data,41 we did not find incremental value of our machine learning models compared with logistic
regression despite the larger sample size and 25 predictor variables included. However, we
emphasize that multiple models should be explored and compared when developing
prediction models.

Limitations
Our study has limitations. It was based on a large nationwide spine register using input data that align
well with data available in spine registries worldwide, providing unique external validation
opportunities; however, there are probably important features that we could not include due to
availability, and the incremental predictive value of other predictors should be explored in external
validation studies with model updating. Furthermore, the detail of some data types is also suboptimal
in the NORspine registry (eg, previous medication, health care use, and work status). Including data
from electronic health registries may improve predictive performance. Enrichment of our models
with these data types is a subject for further work.

There are other limitations to our study. Although missingness of predictive features was low,
the rate of missing outcome data was high. However, we accounted for missing data using a multiple
imputation procedure, and complete-case analysis showed consistent results. Analyses from the
NORspine registry also indicate that loss to follow-up does not bias conclusions about treatment
effects, with no major differences in patient-reported outcomes between nonrespondents and
respondents.42,43

Furthermore, a single agreed-on cutoff for defining benefit following lumbar discectomy is yet
to be established. We chose estimates of treatment success as the outcome, calculated using anchor-
based predictive modeling.24,25 Similar cutoffs for substantial benefit have recently been established
in the Canadian Spine registry.44 In addition, our study sample only consisted of patients undergoing
surgery (specialist health care), and their potential outcomes following nonsurgical treatment remain
unknown. We argue that patients at high risk of not achieving a substantial benefit from surgery
should be recommended other treatment pathways, but an impact study is needed to examine
potential outcomes following nonsurgical treatment. We also acknowledge that important questions
remain regarding the optimal timing of surgery,45 which we were not able to shed light on within our
study design.

Conclusion

We developed and validated machine learning models with high to moderate discriminative
performance for predicting success or nonsuccess in disability and pain 12 months after lumbar disc
herniation surgery. The models were based on routinely available preoperative predictors, making
them readily amenable to further external validation in other spine registries and potentially
implementable in electronic medical records systems to inform about individual prognosis and aid in
surgical decision-making.
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