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ABSTRACT 

The Iberian Peninsula subregion is known for the increasing frequency and intensity of heatwaves and 

drought conditions, but a comprehensive understanding of the statistical dependencies between these events is 

still underexplored. This undermines effective climate adaptation and mitigation strategies. We analyse ERA5 

reanalysis daily mean temperature and precipitation data to investigate the statistical dependencies between 

heatwaves and drought conditions for the period 1950–2022 in the Iberian Peninsula. Through statistical 

analysis of precipitation and temperature data into binary states classifying the occurrence of heatwaves and 

droughts, we construct Markov-chain models describing the temporal sequence of these extreme events 

throughout the Iberian Peninsula. Moreover, using the binary states we introduce a similarity measure 

between pairs of geographic locations, based in the Hamming distance, which enables us to visualize a graph 

showing the most similar regions in Iberian Peninsula with respect to extreme climate events. We show that 

this statistical similarity changes significantly in time. 

 

INTRODUCTION 

Heatwaves and droughts, two types of extreme events with very different onsets, are becoming more frequent 

and with rising intensities due to climate change (Bell et al., 2018). They affect many human activities and the 

environment (Ferral et al., 2017). These two types of events often combine into extreme compound events 

(Leonard et al., 2014), which can cause superior impacts than isolated events (Zscheischler et al., 2017; 

Bevacqua et al., 2021). For example, the 2010 compound event in Russia, which combined a massive 

heatwave and drought (Schumacher et al., 2019), had widespread crop yield losses throughout Russia, 

northeastern Ukraine and northwestern Kazakhstan (Loboda et al., 2017). Therefore, it is vital to understand 

the relationship between them.  

Among the panoply of multivariate approaches applied to assess the impacts of multiple climate hazards, the 

use Markov chain (MC) models have become widely used in climate analysis, especially in droughts and 

heatwaves (Hao et al., 2018). The multi-phase MC model was used by (Lennartsson et al., 2008) to build a 

model that is capable of predicting the precipitation occurrence at a particular grid station in Sweden. The MC 

has also been utilised in several studies that have investigated the predictability of El Nino-Southern 

Oscillation (ENSO) and its connections to the solar and atmospheric indices (Iqbal & Siddiqi, 2022; Kirov & 

Georgieva, 2002; Navarra et al., 2013). Subsequently, we further analysed the co-concurrency of extreme 

events on each grid point pair as similarly applied to explore drought spatial patterns across Europe 

(Giaquinto et al., 2023). Nevertheless, in the context of assessing the propensity of extreme climate events, 

MCs are not a typical choice.  

In this paper we will process temperature and precipitation data into binary states, labelling occurrence or 

absence of extreme events with respect to those two climate variables, respectively heatwaves and droughts. 

The sequence of binary states in time at particular geographic locations will then be used to derive a MC 
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describing the transition between the binary states. We used the ERA5 reanalysis dataset from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) daily data with a fine spatial resolution of 0.25 

degrees from 1950 to 2022 (Hersbach et al., 2020).  

DATA AND METHODS 

The sequence of binary states in time at particular geographic locations will then be used to derive a MC 

describing the transition between the binary states. We used the ERA5 reanalysis dataset from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) daily data with a fine spatial resolution of 0.25 

degrees from 1950 to 2022 (Hersbach et al., 2020). The study area is within the geographic coordinates of 

36°N to 44°N latitude and -10°E to 4°E longitude. The ERA5 dataset provides daily precipitation and 

temperature data, which are the basis for calculating SPI and extreme temperature exceedances . Our methods 

are based on the statistical analysis of time-series of precipitation and temperature, as well as methods to 

derive the MC of binary states classifying the occurrence or absence of heatwaves and droughts. The mapping 

from continuous variables of temperature and precipitation into the binary states of heatwaves and droughts is 

based on the standard definition of extreme (high) temperatures which are heatwaves (above the 90th 

percentile), and extreme (low) precipitation which are droughts.  

Processing precipitation data and performing drought analysis 

The Standardized Precipitation Index (SPI) is one of the most commonly used indices for identifying and 

quantifying drought conditions due to its low data requirement and its ability to analyse the various aspects of 

drought based on varying time-scales. SPI plays a pivotal role in the identification and characterization of 

drought or wet events, enabling the determination of their duration, intensity, and magnitude. Renowned for 

its simplicity, the SPI, introduced by McKee et al. (1993), relies solely on precipitation data and has garnered 

widespread adoption, endorsed by the World Meteorological Organization (WMO, 2012), albeit not without 

considerations (Vicente-Serrano et al., 2010). The SPI's intrinsic multiscalar nature facilitates temporal and 

spatial comparability, thereby enabling the monitoring of drought response across diverse ecosystems. SPI 

targets only precipitation anomalies, being  a robust tool for monitoring drought (WMO, 2012).  

The calculation of SPI over different time scales (1, 2, 3, 6, 12, and 24 months) allows for the monitoring of 

drought conditions from shorter periods to longer periods. The 12-month period offers a view of precipitation 

over an entire year, reflecting long-term trends, which is key for detecting and managing hydrological 

droughts. We adopted this time scale for this study because SPI-12 captures long-term trends in precipitation, 

providing a broader picture of drought conditions. It is less influenced by short-term variability and can 

indicate more persistent anomalies in precipitation. Drought indices are classified into various categories, 

providing a standardized method to assess and communicate drought severity based on the SPI values as 

follows: 2.0 or more: (extremely wet), 1.5 to 2.0: (very wet), 1.0 to 1.5: (moderately wet), 0.0 to 1.0: (mild 

wet), -1.0 to 0: (near normal), -1.5 to - 1.0: (moderately dry), -2.0 to -1.5 (severely wet), -2.0 or less: 

(extremely dry). 

Figure 1. (Left) SPI data series for 3-, 6- and 12-months timescales for a given location (Blue line). The pink color 

indicates less than median precipitation in a series of SPI data series; (Right) Example of heatwave periods from 

temperature data series (red dots) 
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Processing temperature data and performing heatwave analysis 

For heatwave detection, one calculates a daily threshold at the 90th-percentile temperatures for each calendar 

day considering the climatological temperature averages. A dynamic threshold for heatwave detection is 

computed using a moving centered window of 31-days  applied to the climatological temperatures. This 

guarantees that climatological averages and anomalies are appropriately reflected in the 90th percentile 

threshold.  

Further refinement is achieved by calculating a rolling sum of days flagged as exceeding the 90th percentile 

threshold: the first day of a heatwave is the 5th consecutive day above the 90th percentile, indicating a 

continuous sequence of high temperatures typical of a heatwave. If there is a drop below the 90 th percentile 

between a heatwave day and an abnormal temperature, the drop day is still counted as part of a continuous 

heatwave period. This aligns with the definition of heatwaves, as events persist for multiple days. Figure 1 

(right) illustrates the occurrence of a heatwave in a series of temperature measurements. 

Binary states of extreme climate events, Markov-states and Hamming distance 

Flagging each day of temperature and precipitation time series as belonging or not to a heatwave and drought 

respectively, we derive an auxiliary time series of binary states (SH, SD). State SH , SD = 0, indicates the 

absence of a heatwave or drought respectively, while a value of 1 indicates its respective occurrence (Figure 

2).  

By tracking simultaneously the derived series of binary states for both heatwaves and droughts, we then 

calculate the frequency of all possible transitions between the four possible states, (SH, SD) = [(0,0); (0,1); 

(1,0); (1,1)]. These frequencies are mapped into conditional probabilities . 

 

𝑃((𝑆𝐻(𝑡 + 𝛥𝑡), 𝑆𝐷(𝑡 + 𝛥𝑡))|(𝑆𝐻(𝑡), 𝑆𝐷(𝑡))) =  
 𝑃((𝑆𝐻(𝑡+1),𝑆𝐷(𝑡+1));(𝑆𝐻(𝑡),𝑆𝐷(𝑡)))

𝑃((𝑆𝐻(𝑡),𝑆𝐻(𝑡)))
         (1) 

 

where 𝛥t is the time within which the transition occurs. Here we consider 𝛥t=1,2,3,4,5 and 6 months. The set 

of conditional probabilities defines a MC. Figure 3 illustrates the Markov-chain (Left) and frequency of 

binary-states transitions (Top-Right) for a specific time delay (𝛥t=1 month). We derive one Markov-chain as 

described above for each grid in the mesh covering this region (Figure 3, Bottom-Right). 

Together with the binary states labelling the occurrence of heatwaves (H) and droughts (D), (SH, SD) which 

are used to derive one MC for each location in Iberian Peninsula, we also consider the Hamming distance 

(Mackay, 2003) between both the heatwave and drought series of binary states. The Hamming distance is 

defined for each pair of locations, l1 and l2, and it is given by:  𝐻𝑡𝑜𝑡𝑎𝑙(𝑙1, 𝑙2)  = √𝐻𝑑
2(𝑙1, 𝑙2) +  𝐻ℎ

2(𝑙1, 𝑙2)   

 where 𝐻𝑑(𝑆1
(𝑑)
, 𝑆2

(𝑑)
)  =

1

𝑁
∑𝑁𝑖=1 |𝑠1

(𝑑)
(𝑖) − 𝑠2

(𝑑)
(𝑖)|  and  𝐻ℎ(𝑆1

(ℎ)
, 𝑆2

(ℎ)
)  =

1

𝑁
∑𝑁𝑖=1 |𝑠2

(ℎ)
(𝑖) − 𝑠2

(ℎ)
(𝑖)|, 

with 𝑠2
(𝑑)
(𝑖) and 𝑠2

(𝑑)
(𝑖) the binary state (0 or 1) with respect to heatwave (“h”) or drought (“d”) at location l1 

in day i, and similarly for location l2. In other words, the Hamming distance measures the proportion of 

differing bits between sequences, providing a quantitative measure of sequence dissimilarity.  
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Figure 2. Illustrative example for the year 2006. Red dots indicate heatwave binary states and blue crosses indicate 

drought binary states. A low value (around 0) indicates absence of heatwave/drought, while high value (around 1) 

indicates the respective occurrence 

 

  

Figure 3. (Left) Markov chain probability of changing to another state Heatwaves and SPI-12 (Top-Right) Histograms of 

Possible transitions from one State to another. (Bottom-Right) Transition Probabilities from States 01 and 10 to Other 

States on Month 1. 

RESULTS      

The 90th percentile temperatures differ across Iberia, with the southern regions showing a higher average 

temperature than the northern region. The Pyrenees Mountains between Spain and France show a much lower 

average 90th percentile temperature than the remaining areas. Regarding precipitation, the northern coastal 

regions of Portugal and Spain, as well as the Pyrenees Mountains, show higher annual values (not shown). 

By computing the Hamming distance between each pair of geographic locations (longitude and latitude), one 

can draw a weighted graph of similarities, where nodes represent locations and edges represent the similarity, 

with a thickness proportional to the inverse of the Hamming distance. Figure 4 collects the main results of this 

manuscript showing, from left to right, three consecutive periods, 1951-1975, 1976-2000 and 2001-2022. The 

last column shows the graphs for the total time period 1951-2022. 

The distribution of the similarity values, 1/Htotal, follows approximately a power-law (not shown). For this 

reason, plotting the last quartile of highest similarities leads still to a too dense graph, difficult to visualize. 

Therefore, we opted by showing in Figure 4 only the 1% highest similarities (first row), 0.1% (second row) 

and 0.01% (third row). 

Four points are worth highlighting. Firstly, for all time periods, the highest similarities occur typically 

between close – or adjacent – geographic locations. Second, through time the “clusters” of high similarities 

have covered a larger and larger region of the peninsula. This is particularly true for the last periods, from 

1976-2000 to 2001-2022. Third, through time the value of the similarities for the highest percentiles has 
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decreased. Lastly, the areas where the highest similarities occur do not seem to be connected with the 

occurrence of higher temperatures or lower precipitation regions. 

 

Figure 4: Assessing the similarity with respect to extreme climate events, between different regions in Iberian Peninsula. 

(Col. 1, Left) Graph with the cumulative similarities between 1951 and 1975, (Col. 2) between 1976 and 2000, (Col. 3) 

between 2001 and 2022, and (Col. 4) the total time period 1951-2022. (First row, Top) Graphs showing the 1% highest 

similarities, (2nd row) the 0.1% highest similarities and (3rd row) the 0.01% highest similarities. The similarities are 

measured by the inverse of the corresponding Hamming distance between each two geographic locations. Blue dots 

represent grid points, whereas red edges represent the similarity “strength” between pairs of points. 
 

DISCUSSION AND CONCLUSIONS        

The results described previously show evidence that high similarities have become weaker through time and, 

simultaneously have spread through larger regions. On one hand, this might indicate that coping with possible 

occurrences of extreme events can become more difficult, since similarities between different geographic 

regions seems to weaken since the last decades. On the other hand, the more homogeneous distribution of 

highest similarities throughout the entire Peninsula, shows that more and more the occurrence of an extreme 

event, when observed, tends to spread out through larger regions.  

All in all, we have introduced and developed a framework to analyze the ubiquity of transitions from and to 

extreme events related with temperature and precipitation. The framework includes two parts: one, described 

through a Markov chain model, related with the probability of state transition at individual locations, and 

another, based in Hamming distance, which measures how similarly these transitions occur in two distinct 

locations. A possible next step in this approach is to include similarities incorporating a non-zero time-lag 

between the pair of locations. In this way, high similarities between different locations, for a particular time 

lag, could open the possibility to uncover possible causal connections between different regions.  
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