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ABSTRACT
We address ECG data classification, using methods from explainable
artificial intelligence (XAI). In particular, we focus on the extended
performance of the ST-CNN-5 model compared to established mod-
els. The model showcases slight improvement in accuracy sug-
gesting the potential of this new model to provide more reliable
predictions compared to other models. However, lower values of
the specificity and area-under-curve metrics highlight the need to
thoroughly evaluate the strengths and weaknesses of the extended
model compared to other models. For the interpretability analysis,
we use Shapley Additive Explanations (SHAP), Gradient-weighted
Class Activation Mapping (GradCAM), and Local Interpretable
Model-agnostic Explanations (LIME) methods. In particular, we
show that the new model exhibits improved explainability in its
GradCAM explanations compared to the former model. SHAP effec-
tively highlights crucial ECG features, better than GradCAM and
LIME. The latter methods exhibit inferior performance, particularly
in capturing nuanced patterns associated with certain cardiac condi-
tions. By using distinctive methods in the interpretability analysis,
we provide a systematic discussion about which ECG features are
better - or worse - uncovered by each method.
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1 INTRODUCTION
Electrocardiogram (ECG) has been used in medicine for over a cen-
tury and remains an essential diagnostic tool for heart conditions
[29]. It can offer insightful information about both cardiac and
non-cardiac health and diseases, including arrhythmias, ischemia,
hypertrophy, and electrolyte disturbances. However, the ECG in-
terpretation requires extensive knowledge and experience and is
susceptible to errors and biases of expert (human) analysis [27].
Therefore, a correct interpretation of the ECG is essential, which
requires healthcare professional expertise able to recognize subtle
changes in the electrical activity of the heart [3]. However, med-
ical professionals typically detect heart arrhythmias by visually
inspecting the ECG wave patterns and shapes, which can be time-
consuming and resource-expensive. Moreover, such empirical ECG
analysis is prone to misinterpretations, particularly when there is
a lot of data to examine and decisions are expected to be taken in
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short time periods, raising risks of misdiagnosis of a fatal heart
condition [34].

Artificial Intelligence (AI) has emerged as a promising tool in
ECG analysis [27], offering the potential to improve the accuracy
and efficiency of diagnoses and treatment plans. AI systems can
recognize patterns of illness and predict accurate diagnoses. These
algorithms have in some cases outperformed the trained eye of
clinical experts in identifying high-risk patients [19]. This is due
to the ability of AI to differentiate between heart diseases, based
on the identification of patterns, which are very similar and have
small discrepancies hidden from the human eye [1].

However, the high performance of AI models comes with a cost:
the lack of transparency. The high complexity of AI models - partic-
ularly those that follow the so-called deep learning (DL) paradigm
[10]- obscures the rationale behind the decisions retrieved as an
outcome of an algorithm [8]. The opacity of such algorithms affects
the trust of physicians accountable for the medical decisions, and
therefore undermines the usability of such AI solutions in practice.

Improving the interpretability of deep learning classifiers in
the medical domain presents challenges owing to the inherent
uncertainty, class imbalance, data heterogeneity, and noise present
in medical datasets [7]. Since it is improbable that AI will substitute
the full role of cardiovascular professionals, AI must be trustful
from the expert perspective and to be trustful for a healthcare
professional, it must provide interpretable outcomes [21].

In this paper, we analyze ECG data using deep learning algo-
rithms to detect heart diseases and assess their interpretability,
using a panoply of different methods in Explainable Artificial Intel-
ligence (XAI) whose output is then discussed and compared.

2 RELATEDWORK
Deep learning methods have transformed cardiac disease classifica-
tion [24], offering advanced capabilities to analyze complex medical
data. We explore some DL methodologies for classifying cardiac
diseases, followed by an examination of XAI techniques used to
interpret DL model decisions. Through reviewing related works,
we aim to highlight advancements and challenges in leveraging DL
and XAI for enhanced cardiac diagnosis.

2.1 DL methods to classify cardiac diseases
Many studies focus on the utilization of DL techniques for an-
alyzing ECG data. Somani et al. [28] conducted a review of 31
research papers and found that Convolutional Neural Networks
(CNNs) were extensively used for ECG analysis due to their effec-
tiveness in identifying patterns in large healthcare datasets. Their
review highlighted the groundbreaking performance of deep learn-
ing models in uncovering hidden associations within vast datasets,
showcasing the promising potential of these models in revolution-
izing ECG analysis. Additionally, Khurshid et al. [18] developed a
deep learning-based model for predicting the risk of atrial fibrilla-
tion (AF), based on 12-lead ECG data. Their study demonstrated
the reliability and validity of deep learning models in estimating
AF risk across diverse populations, suggesting their potential as
valuable tools in quantifying future AF risk.

Kashou et al. [17] developed an artificial intelligence-enabled
ECG (AI-ECG) algorithm capable of analyzing 12-lead ECGs as

accurately as cardiologists. Their study showcased the potential of
AI-ECG systems in improving ECG interpretation, reducing medi-
cal errors, and enhancing clinical workflows. Additionally, another
study [5] utilized artificial intelligence-enhanced ECG methods to
identify patients with AF by developing a CNN capable of detect-
ing AF signatures present during sinus rhythm. These findings
underlined the potential of AI-enabled ECG analysis in accurately
diagnosing AF, thereby aiding in better patient management. An
article [27] reviewed the application of artificial intelligence in
enhancing electrocardiography (AI-ECG) for cardiovascular dis-
ease management, highlighting its role as a potent non-invasive
biomarker for cardiovascular diseases.

While such works provide significant evidence of the technical
performance of DL algorithms to classify ECGs, the level of "accep-
tance" and their reliability from the perspective of human experts
does not necessarily match this level of performance, due to the
need for interpretability.

2.2 XAI methods
XAI is a rapidly growing field of research, driven by concerns about
the safety and ethics of using high-performance "black-box" AI
models. The need for explainability arises from public apprehension
about AI’s potential consequences. Researchers view explainability
as a way to enhance trust and acceptance of AI systems. Qualitative
and quantitative studies on human-AI interactions seek to validate
and/or assess this trust enhancement through explainability, among
other aspects [37] [31].

Benchmark methods in XAI include the SHapley Additive ex-
Planations (SHAP), by Anand et al. [4], which enhances the in-
terpretability of deep neural network models developed for ECG
analysis. This transparency not only fosters trust and confidence
among healthcare professionals, particularly cardiologists but also
enables them to understand the model’s decision-making process
and validate its outputs against their expertise. The study empha-
sizes the potential impact of interpretable AI models in low- and
middle-income countries, where healthcare infrastructure is often
strained, by improving the efficiency of healthcare services through
the integration of interpretable AI models into clinical workflows.

Another important method in XAI, introduced by Hicks et al.
[12], is the ECGradCAM, amethod to enhance the interpretability of
deep learning-based ECG analysis, which generates attention maps
to explain neural network decisions and reveals insights into their
operation. The study highlights the importance of interpretable
machine learning models in medicine and advocates for their thor-
ough evaluation and adoption across medical domains beyond ECG
analysis. Furthermore, Agrawal et al. [2] proposed an XAI solution
to enhance the explainability of heartbeat classification, aiming to
explain the rationale behind classification decisions using various
model-agnostic methods. Their study stressed the importance of in-
terpretability in medical AI applications and suggested avenues for
refining and extending the proposed methodology for real-world
implementation in clinical settings.
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Figure 1: Superclass distribution of the data set that shows
"Normal" ECG records have the highest percentage, followed
by "MI", and then "STTC". "CD" and "HYP" contain the fewest
records. This distribution suggests that the model may have
greater accuracy in diagnosing "Normal" cases, given the
larger number of available records for this category, com-
pared to "HYP".

3 MATERIALS AND METHODS
3.1 The Data set
In this work, we use an openly available dataset provided by the
Physikalisch-Technische Bundesanstalt (PTB) [33]. PTB built a large
database of ECG records, called the PTB-XL ECG data set. The
database comprises a total of 21,801 clinical 12-lead ECG records
of 10 seconds in length from 18,869 patients. This diverse patient
population is almost evenly split between genders, with 52% being
male and 48% female. The data set offers a wide age spectrum,
ranging from newborns to individuals aged 95, with a median age
of 62 and an interquartile range spanning 22 years.

Each of the records falls into one or more of five distinct super-
class categories, forming the basis for multilabel classification. The
five diagnostic superclass categories of this data set are "NORM"
for normal ECG readings, "MI" representing myocardial infarction,
"STTC" denoting ST/T changes in ECGs, "CD" indicating conduc-
tion disturbances, and "HYP" signifying hypertrophy. The value
counts and distribution of these various categories are visually
represented in Figures 1 and 2.

Metadata and waveforms were transferred to open data formats
for simple processing by common applications. The waveform files
are kept in WaveForm DataBase (WFDB) format, which has a sam-
pling rate of 500 Hz and a downsampled version of the waveform
data at a sampling frequency of 100Hz, a resolution of 1 LSB, and
16-bit precision [33].

3.2 Implementation of DL architectures
The datasets described above were trained and evaluated with the
deep learning architectures described in this section.

3.2.1 Spatio-Temporal CNN Model (ST-CNN). We recreated the
ST-CNN-5 Model based on the paper by Anand et al. [4]. The ’5’ sig-
nifies the inclusion of five temporal layers within its architectural

Figure 2: Plot of value counts of Superclass Diagnosis. A
single ECG record may be associated with as many as four
different superclasses. This shows the multilabeled nature of
the dataset, where each ECG record can be categorized under
multiple superclasses simultaneously.

design. This model comprises of convolutional layers for feature
extraction from ECG data with 12-time steps and 1000 features,
integrating skip connections for gradient flow. It splits into five
temporal and one spatial analysis paths, with convolutional layers
capturing temporal dependencies and global average pooling ag-
gregating spatial information. Following this, two fully connected
layers perform high-level feature abstraction, while the implementa-
tion of a L2-regularization and dropout criteria mitigate overfitting.
The model concludes with a dense layer applying the sigmoidal acti-
vation function for multi-label classification, yielding a probability
distribution over classes.

In this work, we extend this ST-CNN-5 model, hereafter referred
to as "ST-CNN-5 new" going forward, by incorporating the follow-
ing:

(1) Skip connections: Added skip connections before applying
the ReLU activation function, allowing direct influence on
subsequent layer outputs, thus addressing vanishing gradi-
ents and enhancing performance.

(2) EarlyStopping callback: Stops training if validation loss does
not improve for a specified number of epochs, preventing
overfitting.

(3) ReduceLROnPlateau callback: Dynamically adjusts learning
rate during training for improved convergence.

(4) An increased dropout rate: Raised dropout rate to 0.3 to
mitigate overfitting.

The model was configured using the Adam optimizer along with
the binary cross-entropy loss function. Additionally, callback func-
tions were utilized to optimize the model’s performance throughout
the training process. The sketch illustrating the architecture of this
extended model can be seen in Figure 3.

3.2.2 Replication of state-of-the-art models. For a systematic com-
parison, we also consider benchmark models from the paper in
Ref. [30], which fall into two categories: CNNs and recurrent neural
networks (RNNs), both operating on the raw ECG signal. CNNs
are further categorized into standard feed-forward architectures,
resnet-based architectures, and inception-based architectures.
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Figure 3: Block Diagram of "ST-CNN-5 new" Architecture: The model features five convolutional blocks dedicated to capturing
temporal information, followed by a singular block focused on spatial analysis. Following this, the data flows through two
fully connected layers incorporating a dropout rate of 0.3 for regularization. The final output is processed through a sigmoid
activation function to derive the probabilities.

Authors from [30] mention that standard feed-forward archi-
tectures include fully convolutional networks [35] (fcn_wang) and
resnet-based architectures [36] (resnet1d_wang) have demonstrated
success in various large-scale studies. They also proposed one-
dimensional adaptations and evaluated xresnets [11] (xresnet1dxxx).
As a final convolutional architecture, they adapted InceptionTime
[16](inception1d) architecture to the time series domain.

These implementations involved the use of a concat-pooling
layer for pooling, aggregating the results of global average pooling
and max pooling along the feature dimension. For resnets, they in-
creased the kernel sizes to five. All convolutional models shared the
same fully connected classification head with a single hidden layer
comprising 128 hidden units, batch normalization, and dropout
rates of 0.25 and 0.5 at the first and second fully connected layers,
respectively [30].

For RNN, unidirectional and bidirectional LSTMs [13] (lstm,
lstm_bidir) with two layers and 256 hidden units were considered.
They aggregated the outputs using a concat-pooling layer. Binary
cross-entropy optimization was employed which is suitable for
multi-label classification problems. During training, 1-cycle learn-
ing rate scheduling and the Adam optimizer were utilized [30].

Their training process adopted the sliding window approach
which is commonly used in time series classification. This involves
training the classifier on random segments of fixed length from the
full record, accommodating records of varying lengths, and effec-
tively serving as data augmentation. During test time, they applied
the test time augmentation dividing the record into segments with
overlapping windows and aggregating model predictions using
element-wise maximum. This aggregation significantly enhances
overall performance compared to predictions on random sliding
windows without aggregation. Unless specified otherwise, a fixed
window size of 2.5 seconds was used [30].

All deep-learning models from this paper [30] were implemented
using PyTorch [25], fastai library [14], and Keras.

3.3 Training, testing and performance metrics
The data set was split into training and testing subsets, where 10%
was allocated for testing. Each model underwent training for 20
epochs, utilizing a batch size of 64 samples to optimize compu-
tational efficiency. Throughout the training process, the model’s
performance was continuously monitored using the specified call-
backs to ensure optimal convergence and prevent overfitting. GPU
was used as a hardware accelerator to handle computational de-
mands efficiently. The ST-CNN models were implemented through
the Keras API, which operates on the Tensorflow framework, offer-
ing a robust and streamlined platform for model development and
experimentation.

The standard metrics to assess classification algorithm perfor-
mance were used. Namely, from the number of true/false positives
(𝑇𝑃/𝐹𝑃 ) and true/false negative (𝑇𝑁 /𝐹𝑁 ), we compute:

• The ratio of correctly identified samples to all samples is
called accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

• The proportion of examples that are truly positive among all
examples that we projected to be positive is called precision:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

• Recall is the proportion of real positive instances to all posi-
tive cases:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)
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• Specificity refers to how well a test or model identifies true
negatives among all the actual negative examples [15]:

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(4)

Aditionally, we also use the Area Under The Curve (AUC) Re-
ceiver Operating Characteristics (ROC) curve as indicators of per-
formance for classification at different threshold levels. These two
metrics "mix" some of the metrics listed above. AUC is a measure-
ment of separability, and ROC is a probability curve. It reveals how
well the model can differentiate across classes. When AUC is high,
the model is more accurate. The ROC curve plots the False Positive
Rate (FPR) on the x-axis and the True Positive Rate (TPR) on the
y-axis [23].

3.4 Interpretability
As discussed above, interpreting deep learning models, particularly
CNNs, poses a significant challenge due to their complexity, often
rendered as "black boxes". Understanding the features learned by
these models is crucial for the so-called model transparency and
trustworthiness. We use three widely recognized XAI methods:
SHAP, Gradient-weighted Class Activation Mapping (GradCAM),
and Local Interpretable Model-agnostic Explanations (LIME). These
methods have been identified as among the most popular XAI
techniques in healthcare, according to a systematic review spanning
the last decade (2011–2022) [20].

We use the integrated gradients SHAP which calculates feature
importance in deep neural networks by attributing contributions
of each feature to the model’s output [22].

We also use the GradCAM, which operates by constructing a
model that maps input data to activations within the final convo-
lutional layer [32]. We leveraged the gradients derived from the
predicted class with respect to these activations which computes a
weighted activation map. Through subsequent application of global
average pooling, rectified linear unit (ReLU), and normalization
techniques, the heatmap is refined, representing the spatial im-
portance of features within the input data. Finally, the heatmap is
resized to match the original input size enabling overlaying onto the
original data, enhancing interpretability through the visualization
of regions of interest, distinguished by lighter alpha values.

Finally, we also consider the RecurrentTabularExplainer from
LIME [26]. This method estimates class probabilities. The respective
plot delineates the relevance of features within the context of model
predictions, offering valuable insights into the underlying decision-
making process.

4 RESULTS AND DISCUSSION
4.1 Assessing performance: comparative

analysis
In our comparative analysis between the "ST-CNN-5 new" model
and other established models from existing literature, the results
indicate its superior overall predictive performance compared to
the other models evaluated as seen in Table 1.

Our "ST-CNN-5 new" architecture shows better accuracy and
precision than the other models. While the "ST-CNN-5 new" model

Table 1: Comparative Performance Analysis: ProposedModel
vs. Literature Benchmarks

Model accuracy precision recall specificity AUC

ST-CNN-5 [4] 0.885 0.796 0.665 0.932 0.924
ST-CNN-5 new 0.891 0.798 0.693 0.934 0.932
inception1d [30] 0.886 0.737 0.781 0.896 0.934
xresnet1d101 [30] 0.881 0.72 0.796 0.885 0.931
lstm_bidir [30] 0.884 0.738 0.773 0.895 0.931
resnet1d_wang [30] 0.879 0.704 0.803 0.884 0.929
lstm [30] 0.88 0.734 0.765 0.892 0.926
fcn_wang [30] 0.88 0.735 0.754 0.893 0.925

Table 2: Multiclass Classification report of “ST-CNN-5 new”
Model for each class

Classes precision recall specificity

CD 0.82 0.67 0.96
HYP 0.74 0.47 0.98
MI 0.85 0.69 0.96
NORM 0.82 0.91 0.85
STTC 0.77 0.73 0.93

Figure 4: t-SNE plots illustrating the transformation of ECG
data through the "ST-CNN-5 new" model. The first subplot
visualizes the input ECG data after flattening, aligning its
dimensions with the test dataset. In the second subplot, the
t-SNE visualization showcases the output of the final convolu-
tional layer, demonstrating the model’s progressive learning
of distinctive features across separated classes.

achieves higher accuracy, its specificity and AUC metrics are mod-
erate, compared to the other models. Therefore, the overall perfor-
mance of our extended model may not consistently surpass other
models in terms of true negative instances, which is also reflected
in lower AUC.

The main results concerning the multiclass classification of this
new model are shown in Table 2. Both precision and specificity are
considerably high, particularly the specificity, whereas recall shows
a large value only for the control group, and it is particularly low
for HYP classes. This indicates that except for the control group,
the algorithm is better at detecting negative cases than positive
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Figure 5: AUCROC curves of "ST-CNN-5 new" Model for each class

ones. The large values of both precision and specificity are related
through the small number of false positives.

We have included t-distributed Stochastic Neighbor Embedding
(t-SNE) plots in Figure 4 to showcase the ECG data’s transformation
process within the "ST-CNN-5 new" model. These plots are an unsu-
pervised non-linear dimensionality reduction method for exploring
and visualizing high-dimensional data [6]. The plots specifically
focus on test records with a single class label, ensuring a clear repre-
sentation. The visualization offers insight into the output of the final
convolutional layer, illustrating how the "ST-CNN-5 new" model
gradually learns distinctive features across separated classes. This
shows that the model is good at finding important patterns in the
ECG data, helping it classify different heart conditions accurately.

Looking into the AUCROC results of "ST-CNN-5 new" for each
class, the model shows superior performance for the NORM class
as seen in Figure 5. This emphasizes its capability to distinguish
between normal and abnormal ECG recordings. Nevertheless, the
model’s performance is lower for conditions that involve more
subtle ECG changes, such as HYP. This suggests that the model
may struggle to detect these changes, especially in the presence of
other factors that can affect ECG waveforms.

4.2 Interpretability of the new model
In this section, we evaluate the interpretability of the "ST-CNN-5
new" model, which showed overall higher performance than the
other benchmarks.

The results are shown in Figure 6. For SHAP explanations, the
visualization highlights ECG wave segments in red, indicating their

importance with high SHAP values for the classification of the
model. These segments are very important for the model’s decision-
making. Less significant features are shown in blue. In GradCAM
and LIME heatmaps, darker areas signify the most influential con-
tributions to the model’s decision. These highlighted regions are
specific to each lead, based on the data from that particular lead.

An intriguing observation revealed the improved interpretability
of the "ST-CNN-5 new" model in its GradCAM explanations. The
new model could explain its decisions better when compared to the
old one.

In analyzing the characteristics of a normal ECG, sinus rhythm
entails several distinct features, including the consistent positivity
of the P wave and T wave, the presence of a net positive QRS com-
plex, and a smooth transition from the ST segment to the T wave. It
is represented by a positive deflection with a large, upright R wave
in Lead II [9]. The SHAP explanation method effectively highlights
the significance of the positive QRS complex and the smooth tran-
sitioning of the ST segment, showcasing their importance in ECG
classification. Similarly, GradCAM demonstrates proficiency in rec-
ognizing these key features. However, the interpretation provided
by the LIME explanation appears less robust in capturing these es-
sential characteristics of normal sinus rhythm, suggesting potential
limitations of LIME in accurately explaining ECG classifications.
These observations can be seen in Row 1 of Figure 6.

The SHAP explanation pinpointed the deep S wave observed in
Lead V1, a characteristic sign of Left Bundle Branch Block (LBBB)
[9] as seen in Figure 6.2.b. when compared to the literature charac-
teristic as seen in Figure 6.2.a.. This observation suggests a likely
sinus rhythm with a prolonged PR interval, a characteristic often
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Figure 6: (Row 1) 1.a. Characteristic feature of a normal ECG in lead II [9]; 1.b. SHAP explanation of a normal ECG in Lead II; 1.c.
Gradcam explanation of a normal ECG in Lead II; 1.d. LIME explanation of a normal ECG in Lead II. (Row 2) 2.a. Characteristic
feature of LBBB in lead V1 [9]; 2.b. SHAP explanation of LBBB in Lead V1; 2.c. Gradcam explanation of LBBB in Lead V1; 2.d.
LIME explanation of LBBB in Lead V1. (Row 3) 3.a. Characteristic feature of MI in lead III [9]; 3.b. SHAP explanation of MI in
Lead III; 3.c. Gradcam explanation of MI in Lead III; 3.d. LIME explanation of MI in Lead III.

associated with ischemic heart disease when coupled with LBBB.
LBBB falls under the broader superclass of Conduction Disturbance
in the data set, emphasizing the model’s ability to discern intricate
patterns associated with various cardiac conditions.

In the context of explaining the model’s decision for this instance,
Gradcam and LIME exhibited inferior performance compared to
SHAP, suggesting their limited suitability for interpreting our ECG
classification model. The GradCAM heatmap predominantly high-
lights the PQ segment rather than the S segment of the conduction
disturbance as seen in Figure 6.2.c.. Since GradCAM operates by
computing gradients of the target class score concerning the fea-
ture maps of the last convolutional layer, it may not effectively
capture the nuanced patterns associated with the S segment. The
discrepancy observed in the LIME explanation likely stems from
its method of generating local explanations through feature pertur-
bation, which might struggle to capture the intricate relationships
present in ECG data compared to SHAP’s more comprehensive
approach which considers the impact of all possible combinations
of feature values, offering a more detailed understanding of the
model’s decision-making process.

Myocardial infarction (MI) commonly presents with pathological
Q waves, which are wider and deeper than normal Q waves and
ST-segment elevation in leads II, III, and aVF [9]. The report of the
data set indicated sinus rhythm with borderline left axis deviation
and the presence of such Q waves which are consistent with an
old inferior myocardial infarction in leads II, III, and aVF. This
classification was correctly identified by our model. Row 3 of Figure
6 depicts the explanation for Lead III.

While ST-segment elevation received significant attention from
all three explanation models, it is noteworthy that pathological Q

waves were not the primary focus of attention for myocardial in-
farction across these models. Despite being a characteristic feature
of MI, these explanation models struggle to highlight their signifi-
cance due to the complexity of ECG patterns. The presence of other
ECG abnormalities alongside MI, coupled with the inherent chal-
lenges of interpreting medical data, could have further contributed
to the limited focus on pathological Q waves in the explanation
models.

5 CONCLUSION
In conclusion, this study reinforces the potential of deep learning
models in accurately classifying various cardiac conditions from
ECG data. The “ST-CNN-5 new”model outperforms existing models
in terms of predictive accuracy. Its robustness and ability to handle
complex ECG data make it a valuable asset for clinical applications.

Furthermore, the integration of interpretability techniques such
as SHAP, GradCAM, and LIME provides valuable insights into the
model’s decision-making process, enhancing trust and understand-
ing among healthcare professionals. While SHAP values offer valu-
able interpretability, we also acknowledge the limitations of other
methods such as GradCAM and LIME. GradCAMmay struggle with
capturing fine-grained patterns, while LIME may not handle non-
linear relationships well. GradCAM predominantly focuses on the
PQ segment rather than the S segment of conduction disturbances,
while LIME struggles to emphasize the significance of pathological
Q waves in myocardial infarction classification.

This research contributes to advancing the understanding of
interpretable AI methods in ECG data classification, emphasizing
the importance of both performance evaluation and interpretability
analysis in model development.
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Moreover, addressing challenges specific to ECG data, including
temporal dependencies and noise, remains essential for further en-
hancing model performance and interpretability. To bridge these
gaps, collaboration with domain experts such as cardiologists and
clinicians is imperative to refine interpretability tools for practical
use in real-world clinical settings. We can also experiment with
explainability strategies that not only provide insights into model
predictions but also enable meaningful interactions between clini-
cians and AI systems for future research.
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