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Abstract
This paper introduces a novel solution for personal recommendation in consumer electronic applications. It addresses, on the
one hand, the data confidentiality during the training, by exploring federated learning and trusted authority mechanisms. On
the other hand, it deals with data quantity, and quality by exploring both transformers and consumer clustering. The process
starts by clustering the consumers into similar clusters using contrastive learning and k-means algorithm. The local model
of each consumer is trained on the local data. The local models of the consumers with the clustering information are then
sent to the server, where integrity verification is performed by a trusted authority. Instead of traditional federated learning
solutions, two kinds of aggregation are performed. The first one is the aggregation of all models of the consumers to derive the
global model. The second one is the aggregation of the models of each cluster to derive a local model of similar consumers.
Both models are sent to the consumers, where each consumer decides which appropriate model might be used for personal
recommendation. Robust experiments have been carried out to demonstrate the applicability of the method using MovieLens-
1M, and Amazon-book. The results reveal the superiority of the proposed method compared to the baseline methods, where
it reaches an average accuracy of 0.27, against the other methods that do not exceed 0.25.
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Introduction

Electronics are designed for everyday use by individuals.
These can include devices such as smartphones, laptops, tele-
visions, cameras, headphones, and many other devices that
people use daily [1, 2]. Consumer electronics have become an
integral part ofmodern life, and their use iswidespread across
the world. They have revolutionized the way people commu-
nicate, work, and entertain themselves, providing new levels
of convenience, connectivity, and entertainment [3–5]. As
technology continues to advance, consumer electronics are
becomingmore sophisticated, powerful, and affordable. New
devices are constantly being developed, offering new features
and capabilities thatmake our lives easier andmore enjoyable
[6–8]. A personal recommendation in consumer electronics
has attracted a lot of attention in the last decade [9, 10].
This recommendation is subjective and can be influenced by
factors such as the user’s needs, budget, and personal pref-
erences. When someone makes a personal recommendation,
they are sharing their personal experience with the product
and how it has met their specific needs or preferences. This
can be helpful for others who are considering purchasing
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the same product and can provide valuable insights into the
product’s features, performance, and reliability.

Motivation

Solutions to personal recommendation in consumer electron-
ics are divided into three categories:

1. Collaborative filtering: One of the most popular tech-
niques for recommendation systems is collaborative
filtering. Collaborative filtering uses the behavior of users
to find similar users and recommends items that the sim-
ilar users have liked in the past [11–14].

2. Content-based filtering: Another technique for recom-
mendation systems is content-based filtering. Content-
based filtering uses the features of items to find similar
items and recommends items that have similar features
to items the user has liked in the past [15–17].

3. Hybrid approaches: A hybrid approach combines col-
laborative filtering and content-based filtering to take
advantage of the strengths of both approaches [18–20].

Even though these solutions provide high accuracy for
non-complex data, they often require access to personal data
such as browsing history, purchase history, and social net-
work profiles. This raises privacy concerns and requires
careful consideration of data protection regulations. Feder-
ated learning is a machine learning technique that allows
multiple devices to collaboratively train a model without
sharing their raw data with a central server [21, 22]. One
possible direction to solve the aforementioned challenges of
recommendation systems is to consider federated learning
with a trust authority mechanism for improving the accuracy
of recommendations while preserving user privacy. Another
challenge of the existing solutions is the data quantity and
quality. Indeed, these solutions are not able to efficiently learn
from massive data. In order to tackle this challenge effec-
tively, we delve into the realms of both clustering techniques
and transformer models. By incorporating clustering into
our approach, the recommendation system gains the capa-
bility to not only formulate a comprehensive global model
encompassing all consumers but also to generate localized
models tailored to specific clusters of similar consumers.
This means that the system can discern nuanced patterns
and preferences within different consumer segments, thereby
enhancing the precision and relevance of its recommenda-
tions on a more granular level. In addition, and motivated by
the success of transformers in training from massive data,
this research work suggests the use of transformers for the
recommendation system. The last challenge that we observe
for the existing solutions in solving the personal recommen-
dation problem is that they often face difficulty in capturing
the fine-grained relationships between users and items, espe-

cially when dealing with sparse data. To address this issue,
we propose a novel contrastive learning approach for feature
embedding. Our method leverages the power of contrastive
learning to learn meaningful representations of users and
items in a shared embedding space. Thus, the contrastive
learning framework ensures that user-item interactions are
embedded in a way that positive pairs have higher similar-
ities while negative pairs have lower similarities [23, 24].
This leads to a more compact and discriminative embedding
space, where similar users and items are grouped, enhanc-
ing the recommendation performance. Contrastive learning
leverages the abundance of negative samples to learn better
embeddings, making it well-suited for handling sparse data
scenarios in recommender systems.

Contributions

We suggest federated learning-based transformers for per-
sonal recommendations (FLT-PR), a smart hybrid approach
that combines federated learning and transformers for use in
personal recommendations. The following are the primary
achievements of this research work:

1. We introduced a transformer-based approach to address
personal recommendations in the consumer electronics
domain. Initially, embedded features are extracted from
the trained data. These derived features are subsequently
inputted into transformers to facilitate the recommen-
dation process. Additionally, we incorporate consumer
clustering to develop localizedmodels for groups of simi-
lar consumers, thereby enhancing the personalized nature
of the recommendations.

2. We presented an innovative contrastive learning frame-
work tailored specifically for feature embedding within
recommender systems. This framework is designed to
efficiently capture and represent intricate user-item inter-
actions, ensuring a more comprehensive understanding
of user preferences and item characteristics. By leverag-
ing contrastive learning techniques, our approach aims to
enhance the quality and relevance of recommendations
by delving deeper into the dynamics of user-item rela-
tionships.

3. The approach is employed within the context of feder-
ated learning, where it serves to uphold the principle
of a trusted authority. This principle plays a pivotal
role in safeguarding the confidentiality and privacy of
model data throughout the federated learning process.
By adhering to the trusted authority framework, sensi-
tive information remains protected, allowing for secure
collaboration and model training across decentralized
devices or entities.

4. We conducted thorough evaluations of FLT-PR using
well-established recommendation system-baseddatasets.
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Through these comprehensive tests, we demonstrate the
effectiveness of our approach, showcasing its superiority
over state-of-the-art algorithms in terms of both runtime
efficiency and recommendation accuracy. Our results
underscore the robustness and competitiveness of FLT-
PR in addressing real-world recommendation challenges.

The rest of this work is structured as follows. The “Per-
sonal Recommendation in Consumer Electronics” section
shows the basic concepts of the personal recommendation
process in consumer electronics. Following a summary of
the key relevant works for both the FL-based framework and
traffic flow forecasting in the “Related Work” section, the
“FLT-PR: Federated Learning-Based Transformers for Per-
sonal Recommendation” section provides specifics on the
FLT-PR. After that, the “Performance Evaluation” section
assesses our approach using extensive data. The research
study’s conclusions and the future directions of FLT-PR are
discussed in the “Challenges and Future Directions” section.

Personal Recommendation
in Consumer Electronics

Personal recommendation in consumer electronics is made
based on a user’s needs, preferences, and budget. There are
several types of personal recommendations in consumer elec-
tronics, including:

1. ExpertRecommendations: These recommendations are
made by individuals who are considered experts in a par-
ticular field, such as technology, and are often sought
after for their knowledge and experience.

2. User Recommendations: These recommendations are
made by individuals who have personal experience using
a particular product or device and can offer insights into
its performance, features, and usability.

3. InfluencerRecommendations: These recommendations
are made by individuals who have a large following on
social media platforms and are considered to be influ-
encers in their respective niches. They may offer product
reviews or endorsements, often in exchange for compen-
sation or free products.

4. Retailer Recommendations: These recommendations
are made by salespeople or customer service represen-
tatives working for a retailer, who are trained to offer
advice and guidance to customers based on their needs
and preferences.

The personal recommendation process in consumer elec-
tronics includes several steps as illustrated in Fig. 1, and
described in the following:

1. Identify Need: The process begins when the consumer
identifies a need or desire for a particular electronic prod-
uct, such as a smartphone or laptop.

2. Seek Recommendations: The consumer then seeks out
personal recommendations from various sources, such as
experts, friends, family, online reviews, or influencers.

3. Make Decision: The consumer evaluates the recommen-
dations based on factors such as the source’s credibility,
expertise, and alignment with its need and preference.
The consumer then decides onwhich product to purchase
based on its preference.

4. Provide Feedback: After using the product for some
time, the consumer may provide feedback to others in the
form of a personal recommendation or product review,
completing the cycle of personal recommendations in
consumer electronics.

RelatedWork

Federated learning and personal recommendations are two
major research areas that are connected. We will review the
recent and pertinent works on both topics in the sections that
follow.

Federated Learning

In the realm of industrial IoT, Fu et al. [25] proposed an inno-
vative approach to address security concerns by introducing
federated learning with evidence. Their method centers on
verifying the accuracy of the cumulative gradients sent by
a server, which is achieved through Lagrange interpolation.
However, a potential issue arises with the possibility of the

Fig. 1 Personal
recommendation process in
consumer electronics
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server producing counterfeit aggregation results. To counter
this challenge, the authors put forward a solution involving
a trustworthy public key generator, which distributes keys
following the initialization of the model. Subsequently, each
user takes the following steps: first, they locally train their
model and then transmit their encrypted gradients to the
server. This encryption step is vital to safeguardingprivacy, as
it ensures that the gradient remains confidential during trans-
mission. The server, in turn, performs accumulation on this
encrypted data. Importantly, this process eliminates the need
for key exchange between participants, rendering collision
attacks unfeasible. Upon receiving the collected cipher-
texts from the server, each participating member verifies the
integrity of the results before commencing the encryption
process. This approach substantially reduces the effective-
ness of deciphering counterfeit gradients. When compared
to other state-of-the-art techniques, the authors’ solution
exhibits a lower vulnerability to potential assaults seeking
to access private differentials. Furthermore, the introduced
encryption only moderately impacts accuracy in contrast to
a federated learning approach without gradient encryption.
Lastly, it’s worth noting that thismethodminimizes overhead
costs related to encryption/decryption, verification, commu-
nication, and overall operational overhead. The verification
overhead remains constant, regardless of the number of par-
ticipants involved. In the context of fog computing, Zhou
et al. [26] have introduced a federated security learning
approach. Under this paradigm, each fog node is empow-
ered to carry out learning tasks and gather data from IoT
devices. This approach significantly enhances the efficiency
of low-level training. To ensure the security of IoT device
data and shield the model from a parameter server that
may be trustworthy but overly inquisitive, the authors have
implemented sophisticated encryption techniques. Specifi-
cally, when applied to an individual fog node, this innovative
method effectively thwarts the server’s attempts to deduce
training set details from hyperparameters. Furthermore, it
enables resistance against collusion attacks and safeguards
the privacy of the mathematical model, even in situations
where adversarial fog nodes or untrustworthy variables col-
laborate with other nodes. To mitigate vulnerabilities related
to data and content disclosure during the training process,
Yin et al. [27] have proposed a hybrid privacy-protection
approach. Their methodology addresses these issues at mul-
tiple levels. First, during theweighted summing process, both
the gradient weights of each participant and the characteris-
tics of the information they provide are safeguarded using
advanced function encryption techniques. Furthermore, they
introduce a local quantification method to account for pri-
vacy loss due to Bayesian variability. This approach allows
users to adjust their privacy budget in response to the data
distributions within the datasets. Notably, Bayesian differen-
tial privacy outperforms the traditional differential privacy

framework, leading to improved service quality. Lastly, to
enhance performance, a sparse distinction matrix is incorpo-
rated into the function encryption. This optimization ensures
that each training cycle only necessitates modifications to
incremental values similar to previous gradients, minimizing
the server’s computational load while significantly impact-
ing the data transfer and storage capacities on the client side.
Experimental results indicate that the use of sparse variance
gradient techniques leads to improved model accuracy com-
pared to traditional differential privacy measures.

Personal Recommendation

Personalized recommendations aim to alleviate the impact
of data overload by minimizing ambiguity and the delivery
of unwanted information to consumers. Traditional recom-
mendation systems fall into three categories: content-based,
collaborative, and a blend of both approaches. In the con-
text of the Massive Open Online Course (MOOC) system,
a personalized recommendation framework was developed
by integrating deep learning and big data technologies, as
proposed by Li et al. [28] in their work. This approach
introduces several pertinent strategies leveraging the BERT
network to enhance the precision of the recommendation sys-
tem. Firstly, it outlines the acquisition and preprocessing of
open datasets. Secondly, it establishes the groundwork for
a recommendation model by employing the BERT model
and incorporating a self-attention mechanism. To bolster the
model’s recommendation efficacy, a domain feature differ-
ence learning technique is implemented to extract profound
network insights from the course content. In order to assess
users’ attitudes towards connected products, ascertaining
whether they hold a positive, negative, or neutral viewpoint,
Solairaj and their team conducted a comprehensive analy-
sis of user opinions, beliefs, and sentiments, as documented
in their study [29]. This proactive approach enables busi-
nesses to adapt and tailor their products to meet customer
satisfaction. Many of the existing sentiment analysis meth-
ods suffer from inaccuracies and time-consuming processes.
As a solution to these challenges, the authors developed
EESNN-SA-OPR. In this framework, novel recommenda-
tion algorithms were applied, incorporating both Filtering
Collaborative (FC) and product-to-product (P-P) similar-
ity techniques. Collaborative filtering aims to “predict the
best shops,” while product-to-product similarity focuses on
forecasting the best products. In a distinct research con-
text, Swaminathan and colleagues, as documented in their
study [30], advocate the utilization of collaborative filtering
techniques for determining the optimal quantity of fertil-
izers required to promote sustainable crop development.
Addressing the issue of imbalanced data concerning the
unknown fertilizer quantities, they suggest incorporating
auxiliary parameters such as soil fertilizer levels, land area,
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and soil chemical characteristics. Of note, their work intro-
duced an innovative wide matrix factorization technique that
derived feature representations by linearly mapping inte-
grated contextual information vectors. To comprehensively
comprehend historical fertilizer recommendations for the
land, they employed a fully connected multi-layer percep-
tron, preserving non-linear higher-order interactions among
contextual information. In a related vein, the creation of
the Knowledge Augmented User Representation (KAUR)
network, as presented in the study by Ma et al. [31], is
aimed at exploring contrastive learning within collaborative
knowledge graphs. This approach enables the discovery of
semantic neighbors and the derivation of ambiguous inter-
est sets from such knowledge graphs. The KAUR network
leverages a graph neural network to learn the representa-
tion of each node in the collaborative knowledge graph. It
treats information fromnodes and their propagated neighbors
as positive contrastive pairs, enhancing node representations
through contrastive learning. Users or itemswith similar pro-
files are identified as semantic neighbors and included as
positive pairs for further exploration of user interests. This
user representation is then amalgamated with fuzzy interest
sets, enhancing interpretability. In their research,Walek et al.
proposed a hybrid recommender system known as the Eshop
recommender, as detailed in their study [18]. This innovative
system combined a fuzzy expert systemwith a recommender
module comprising three subsystems, each utilizing collab-
orative filtering and content-based techniques. It serves as
an e-commerce recommendation system designed to provide
well-suited product recommendations to users. The fuzzy
expert system played a pivotal role in generating the list of
recommended products. It took into account a wide array of
user preferences and their online store behavior. The expert
system considered various variables, including the similarity
to previously rated products, the coefficient associated with
purchased products, and the average product ratings, in order
to compile the recommended product list.

Discussion

Certainmajor faults exist in the current recommendation sys-
tems, where they lack an accurate model from embedding
to model training. Moreover, there is a lack of data privacy
andmodel security. Particularly, the model data is distributed
less securely and privately throughout the various entities
of the recommendation platform. Table 1 offers the most
recent research on recommendation systems and federated
learning. In this research, we present an end-to-end architec-
ture for a personal recommendation that integrates federated
learning with the current transformers to overcome the afore-
mentioned problems. We will show how our solution gives
customers more precise product recommendations.

FLT-PR: Federated Learning-Based
Transformers for Personal
Recommendation

Principle

Figure2 sketches the FTL-PR solution. It starts with con-
sumer clustering, where the consumers that share similar
features are merged into one group. Training is performed
for each consumer, where the pre-trained model is used to
train its proper data. This step includes embedding, which
aims to map the consumer data to the feature vector. Addi-
tionally, it makes use of transformers to recommend items.
By including the trusted authority principle, we create a fed-
erated learning framework for protecting model data during
the federated learning stage. In this context, we define three
types of models (local model for each consumer, local model
for each group of consumers, and global model for all con-
sumers). In the remainder of this section, we will go over
each component of the FTL-PR approach in detail.

Table 1 Recent literature of federated learning, and personal recommendation systems

Category Work Limits

Federated Learning Fu et al. [25] Test the solution on a simple MNIST data.

Zhou et al. [26] Requires high time computing during the encryption

Yin et al. [27] phase.

Personal Recommendation Li et al. [28] Need to share data for multiple user recommendation.

Solairaj et al. [29]

Swaminathan et al. [30] Lack of advanced deep learning models in the training.

Ma et al. [31]

Walek and Fajmon [18]

123



Cognitive Computation

Fig. 2 FTL-PR: Training is
performed for each consumer,
where the pre-trained model is
used to train its proper data. By
including the trusted authority
principle, we create a federated
learning framework for
protecting model data during the
federated learning stage

a. Send trained local models + grouping informa n

Trusted
Authority

b. Verifica on

+
c. Aggrega on

d. Sharing updated global model + local models for each group

Local Model with weights

For each consumer

Consumer

1. Federated Learning

2. Training

Consumer
data

Embedding

Group of Consumers

Consumer Consumer Consumer Consumer Consumer

Group of Consumers

Feature Vector

Contrastive Learning for Feature Embedding

This phase aims to embed the categorical attributes of the
consumers to feature vectors to facilitate the training of
our transformer. We also consider these feature vector to
cluster the consumers into disjoint clusters, each of which
contains similar consumers. For embedding, we consider
embedding with contrastive learning [32]. Contrastive learn-
ing is an unsupervised learning technique that encourages
similar instances to be close to each other in the embedding
space while pushing dissimilar instances apart. In the context
of recommender systems, we adapt this framework to create
meaningful user and item embeddings.

Embedding Function Let:

– X is the set of all user-item interactions in the recom-
mender system.

– U be the set of users, and I be the set of items.
– E be the embedding space with dimension d.
– fθ : U ∪ I → E be the function that maps users and
items to their corresponding embeddings in the space E ,
parameterized by θ ∈ R

d .

The goal of the embedding function is to project users and
items into a common embedding space, where their interac-
tions are better captured and represented. For example, we
can represent each user u and item i as a low-dimensional
vector in the embedding space, such as fθ (u) ∈ R

d and
fθ (i) ∈ R

d .

Similarity Function To measure the similarity between user
and item embeddings, in addition to cosine similarity, we can
introduce the “Angular Similarity” which takes into account

the angular distance between embeddings. TheAngular Sim-
ilarity “AS” is defined as:

AS(x, y) = cos−1(cosine_similarity(x, y))

π
(1)

AS ranges from 0 to 1, where 0 indicates that the vectors
are perfectly aligned (maximum similarity), and 1 indicates
they are opposite (minimum similarity).

Angular Contrastive Loss

To leverage the Angular Similarity for contrastive learn-
ing, we propose the “Angular Contrastive Loss” that aims
to maximize the angular similarity between positive pairs
and minimize it between negative pairs.

Given a batch of anchor instances A, their corresponding
positive instances P , and negative instances N , the Angular
Contrastive Loss is defined as:

L = − 1

|A|
∑

a∈A

log
exp(AS(a, P))

exp(AS(a, P)) + ∑
n∈N exp(AS(a, n))

(2)

TheAngularContrastiveLoss encourages the embeddings
of positive pairs to have lower angular distances (higher
angular similarity) and embeddings of negative pairs to
have higher angular distances (lower angular similarity).
The Angular Contrastive Loss takes into account the angular
distance between embeddings, which provides a more prin-
cipledway ofmeasuring similarity than the traditional cosine
similarity. By maximizing the angular similarity for positive
pairs, we ensure that similar user-item interactions are pro-
jected closer together in the embedding space. On the other
hand, byminimizing the angular similarity for negative pairs,
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we push dissimilar user-item interactions apart, making the
embedding space more discriminative. Angular Contrastive
Loss has the advantage of being more robust to variations
in magnitude between embeddings, as it focuses on the rela-
tive angles between them. This property makes it well-suited
for capturing fine-grained relationships in recommender sys-
tems, especially when dealing with sparse data.

Training

The goal of this step is to train the model on each network
consumer. The k-means algorithm is first used to cluster the
customers based on the extracted feature vectors.We then use
Transformer to extract the recommendation from the feature
vectors of the consumers. A detailed explanation is given in
the following:

1. Consumer clustering — For clustering, we use the k-
means algorithm with an Euclidean distance to measure
the similarity between two different consumers. k-means
is straightforward to implement and computationally effi-
cient, making it suitable for clustering large consumer
datasets commonly found in recommendation systems. Its
simplicity enables quick experimentation and iteration,
crucial for fine-tuning recommendation algorithms. Let
C={c1, c2, . . . , cn} be the set of n consumers,where each
consumer ci is represented as a d-dimensional vector:

ci = (ci,1, ci,2, . . . , ci,d) ∈ R
d

Let K be the number of clusters we want to create. In the
following, we will give the main insights of our consumer
clustering algorithm:

(a) Initialization: Randomly initialize K cluster cen-
troids: g1, g2, . . . , gK , where each centroid g j is a
d-dimensional vector:

g j = (g j,1, g j,2, . . . , g j,d) ∈ R
d

(b) Assignment: For each consumer ci , calculate the
Euclidean distance to each centroid g j and assign ci
to the nearest centroid:

S(ci ) = arg min
g j∈G

distance(ci , g j )

where the Euclidean distance between ci and g j is
given by:

distance(ci , g j ) = ‖ci −g j‖2 =
√√√√

d∑

k=1

(ci,k − g j,k)2

(c) UpdateCentroids:For each cluster j = 1, 2, . . . , K ,
update the centroid g j as the mean of all consumers
assigned to that cluster:

g j = 1

|S−1(g j )|
∑

ci∈S−1(g j )

xi

(d) Convergence Check: Repeat steps 2 and 3 until con-
vergence, i.e., until the cluster assignments do not
change significantly, or a maximum number of itera-
tions is reached.

2. Local training— In this phase, we harness the capabili-
ties of a transformer for our recommendation system. The
transformer stands out as a neural network architecture
that excels in capturing extensive dependencies within
consumer data. Its noteworthy feature is the self-attention
mechanism, empowering the model to focus on distinct
segments of the input sequence when generating recom-
mendations. Subsequently, we introduce our customized
adaptation of the transformer to analyze the feature vec-
tors extracted in the preceding phase:

(a) Patch Embeddings: Initially, the input features are
segmented into discrete, non-overlapping patches.
Each patch Xi of size N × N is transformed into
a vector representation Ei via a linear projection:

Ei = XiWe + be

whereWe is the weight matrix and be is the bias vec-
tor. These patch embeddings serve as input sequences
for the transformer encoder.

(b) Encoder: The transformer encoder consists of L
identical layers, each equippedwithmulti-head atten-
tion and feedforward neural networks. The multi-
head attention mechanism computes attention scores
between each pair of input patches Ei and E j , allow-
ing the model to focus on various regions within the
input patches simultaneously. The attention mecha-
nism can be mathematically expressed as:

Attention(Q,K,V) = softmax

(
QK�
√
dk

)
V

whereQ,K, andV are the query, key, and valuematri-
ces, respectively, and dk is the dimensionality of the
key vectors.

(c) Positional Encoding: Since transformers lack recur-
rent connections, preserving positional information is
crucial. Positional encodings are added to the patch
embeddings Ei to incorporate positional information
into the input sequence. The positional encoding can
be computed using sine and cosine functions:
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PE(pos,2i) = sin
( pos

100002i/dmodel

)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)

where pos is the position and i is the dimension.
(d) Output Head: At the end of the encoder, an output

head is integrated to transform the final hidden states
into the model’s output. This transformation is per-
formed using a fully connected layer with a softmax
activation function:

Output = softmax(HWo + bo)

where H is the final hidden state, Wo is the weight
matrix, and bo is the bias vector.

(e) Local Recommendation Process: After obtaining
the output from the transformer encoder, the recom-
mendation process begins. This output represents the
features extracted from the input data and encoded by
the transformer. A recommendation can be generated
by computing the similarity between the extracted
features of a given user and the features of each item
in the dataset. This similarity can be calculated using
cosine similarity, Euclidean distance, or other simi-
larity metrics. The items with the highest similarity
scores to the user’s features are then recommended to
the user. Additionally, the recommendation process
can be enhanced by incorporating user preferences,
feedback, and contextual information to personalize
the recommendations further. This iterative process
of feature extraction and recommendation genera-
tion enables the local model of each user to provide
accurate and relevant recommendations based on its
preferences and the characteristics of the items in
the dataset.

Federated Learning

Three ongoing problems with the federated training pro-
cess are addressed in this step. One is the validity check of
the parameters that each consumer posts to the server. The
server’s validity verification of aggregated results is the next
issue that needs to be addressed. Furthermore, to safeguard
the rights and interests of the consumers, we will offer a plan
for assuring the consistency of cumulative results attained by
various consumers.

– a. Sending trained local models — The system initial-
ization involves the establishment of public parameters,
key generation, and data exchange among different
system roles. The trusted authority takes charge of gen-
erating various codes essential for the transmission and

verification of model data. Consequently, the server
receives the local models that consumers have individ-
ually trained, encompassing the models’ architectures,
weights, and the IDs of consumers within each clus-
ter. These elements are homomorphically encrypted prior
to transmission.

– b. Checking model integrity — In our designed feder-
ated learning system, the trusted authority plays a crucial
role in maintaining the integrity and security of the rec-
ommendation process. Acting as the guardian of trust,
this authority oversees the preservation, signing, and
issuance of digital certificates. These certificates serve as
a testament to the authenticity of each locally uploaded
model to the central server. Furthermore, the trusted
authority ensures the accuracy of these models through
rigorous verification processes, thereby upholding the
reliability and effectiveness of the designed federated
learning system.

– c. Model aggregation — Two types of aggregation are
used. The first one is the aggregation of the local model
of each cluster of consumers W (local)C j . The second one
is the aggregation of all models to find the global model
W (global). The detailed formulas are given as follows:

W (local)C j =
∑

u
C j
i

|di |
| ∑DC j

di |
W (local)

i (3)

and,

W (global) =
U∑

ui

|di |
| ∑D

di |W
(local)
i (4)

where C j is the j th cluster of consumers. U = {u1, u2
...uk} is the set of k users. D = {d1, d2...dk} is the set of
k datasets of traffic flow, one for each user in U . W (local)

i
is the weights of the local model of the consumer ui .

– d. Sharing updated global model— Subsequently, the
server transmits the aggregated results to all consumers.
When consumers are influenced by similar individuals,
such as friends, the aggregated local model for each clus-
ter is employed for recommendations. In other cases, the
aggregated global model is used.

It is worth noting that verification takes place during both
the uploading and aggregation phases. For backup and recov-
ery validation, we employ one-way hash mechanisms, along
with a stratified random sampling technique that generates a
unique random number on each iteration. These two stages
can be iterated to enhance the model further. Upon receiv-
ing the newly generated weight parameters for the encrypted
global model, each user in the system proceeds to conduct
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local retraining using the designed transformer. The updated
model can then be forwarded to the cloud server, and this
process can be repeated as needed.

Performance Evaluation

Experimental Settings

We used the two following widely known recommendation
system datasets for evaluation:

1. MovieLens-1M1: The dataset comprising recommended
movies encompasses a vast array of information, total-
ing approximately 1million explicit ratings ranging from
1 to 5. These ratings have been provided by a diverse
pool of 6041 consumers, offering a comprehensive per-
spective on their preferences and opinions. The dataset
covers a wide spectrum of cinematic choices, incorpo-
rating feedback on 3707 distinct movies. This rich and
expansive dataset provides a robust foundation for com-
prehensive analysis and the development of sophisticated
recommendation systems tailored to the diverse tastes
and preferences of the audience.

2. Amazon-book2: It is awidelyutilized resource renowned
for its extensive collection of metadata and consumer rat-
ings pertaining to various books.Within this dataset, each
book is accompanied by detailed information such as its
description, category classifications, pricing details, and
brand attributes. This comprehensive array of data offers
valuable insights into the characteristics and qualities of
each book, enabling in-depth analysis and exploration of
consumer preferences, trends, and behaviors.

We contrast our suggested recommendation model with
the following current state-of-the-art-based models to show
its efficacy:

1. KGAT [33]: It is a model that combines graph learn-
ing, and knowledge graphs. To identify the significance
of neighbor nodes throughout the propagation process,
KGAT employs an attentionmechanism. Then, it dynam-
ically propagates embeddings from nearby nodes to
update node representations.

2. KAUR [31]: The collaborative knowledge graph is rep-
resented by each consumer using a graph neural network,
which views the information of consumers and the
information of their propagating neighbors as positive
contrastive pairs. The consumer representations are then
improved using contrastive learning.

1 https://grouplens.org/datasets/movielens/
2 https://www.cp.jku.at/datasets/LFM-1b/

3. RippleNe [34]: This technique,whichmay automatically
disseminate consumer preferences and investigate con-
sumers’ hierarchical interests in the knowledge graph, is
comparable to memory network propagation.

4. CFKG [35]: It combines consumer behavior and item
information into a single structure and suggests realistic
predictions that have been turned into triples, which may
then be used to explore paths in the feature embedding
space to generate explanations about the recommended
items.

5. MKR [35]: It is a framework for multi-task learning that
helps recommendation by using feature embedding. It
can transfer knowledge between tasks and automatically
learn significantly greater interactions between item and
consumer features.

We employ Recall@K and NDCG@K, two frequently
used metrics, with K = [10, 20, 50], to assess the efficacy
of top-k recommendation and preference ranking (Table2).
Ameasure of the percentage of related things among all items
is called recall@K. To explain the position of hits, the rank-
ing quality NDCG@K (also called Normalized Discounted
Cumulative Gain) gives higher scores to top-ranked hits.

Feature Embedding Comparison

To train our personalized recommendation model with con-
trastive learning, we sample positive and negative items for
each user from the set of user-item interactions X . The
number of negative samples per user, K , is an important
hyperparameter that affects the model’s performance. We
then optimize the parameters θ of the embedding func-
tion fθ to minimize the contrastive loss Lcontrastive using
stochastic gradient descent or other optimization algorithms.
During training, the model learns to map similar user-item
pairs close together in the embedding space while pushing
dissimilar pairs apart. After training, themodel canmake rec-
ommendations by computing the similarity between a user’s
embedding and item embeddings to rank potential recom-
mendations. We compare our feature embedding with dense
embedding [36]. It is a mathematical representation of a con-
sumer in a high-dimensional space, created using a dense
embedding layer. The embedding captures important features
and characteristics of the consumer, such as its genre, popu-
larity, and historical interactions. A dense embedding is con-
sidered “dense” because it maps a consumer to a continuous
vector space,where each element in the vector has ameaning-
ful value, as opposed to a sparse representation where most
elements are zero. This enables our clustering algorithm,
and transformer to capture complex relationships between
consumers thatmay be difficult to represent using simple fea-
tures. Figure3 presents T-SNE visualizations of both dense
embeddings and embeddings generated using contrastive
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Table 2 Performance of FLT-PR and state-of-the-art solutions in terms of Recall@K and NDCG@K

Dataset Metrics KGAT KAUR RippleNet CFKG MKR FLT-PR

Recall@10 0.17 0.18 0.12 0.16 0.14 0.19

NDCG@10 0.27 0.28 0.20 0.25 0.22 0.32

MovieLens-1M Recall@20 0.25 0.27 0.21 0.25 0.22 0.26

NDCG@20 0.29 0.28 0.21 0.24 0.25 0.28

Recall@50 0.43 0.42 0.35 0.40 0.40 0.46

NDCG@50 0.32 0.31 0.24 0.31 0.27 0.35

Recall@10 0.19 0.17 0.07 0.13 0.10 0.18

NDCG@10 0.08 0.11 0.06 0.09 0.06 0.10

Amazon-book Recall@20 0.20 0.25 0.12 0.18 0.17 0.29

NDCG@20 0.10 0.15 0.07 0.11 0.09 0.19

Recall@50 0.30 0.38 0.24 0.33 0.29 0.42

NDCG@50 0.12 0.17 0.11 0.14 0.12 0.21

average – 0.22 0.25 0.17 0.22 0.19 0.27

The bold value are best values observed in the running experiments

learning. In the dense embedding, the features obtained are
dispersedwidely across the 2D spacewithout any discernible
patterns or groupings. Consequently, T-SNE struggles to
identify natural clusters or groupings of data points. More-
over, there is no clear separation between different clusters
because this approach distributes points across the entire
space without considering any underlying relationships. This
results in high uncertainty or entropy in the feature space,
where entropy refers to the level of disorder or unpredictabil-
ity in the data distribution. In this scenario, the high entropy
indicates that T-SNE fails to find any meaningful structure
or patterns, leading to a lack of information about the under-
lying organization of the data. Additionally, the absence of
structure and clear patternsmakes it challenging to differenti-
ate any signal from noise. Random noise in the features may
dominate the visualization, making it difficult to interpret
or draw meaningful conclusions. In contrast, the contrastive
learning-based embedding generates features in amore orga-
nized manner, resulting in distinct clusters in the 2D space.
The T-SNE algorithm successfully identifies similar features
and groups them into clusters. Furthermore, different clusters

are well-separated, indicating that T-SNE captures the under-
lying similarities and differences between groups of features
effectively. Our embedding exhibits low entropy, suggesting
a more organized and structured representation. The T-SNE
algorithm can unveil the inherent organization in the features,
providing a clearer view of the feature’s patterns and rela-
tionships. The clusters and separation in our embedding are
meaningful representations of the features. Features within
the same cluster are more similar to each other, while fea-
tures in different clusters are more dissimilar. This enables
better interpretation and analysis of the features.

Accuracy and Federated Learning Performance

To rigorously validate the performance of FLT-PR in terms
of accuracy, we conducted robust experiments. We varied
the top k recommendations retrieved from a set of values,
namely {10, 20, 50}, and computed recall and NDCG val-
ues for two datasets, MoviLens-1M and Amazon-book. Our
simulation accounts for the maximum accuracy of both the
global model, applicable to all consumers, and the local

Fig. 3 Contrastive
learning-based embedding vs.
dense embedding
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model within the respective consumer cluster. The results
unequivocally demonstrated the superiority of FLT-PR when
compared to baseline personal recommendation solutions. In
fact, our solution outperformed other alternatives in eight out
of twelve cases. Specifically, KAUR and KGAT achieved the
best results in twocases each.Moreover, the average accuracy
of our solution surpassed that of other solutions, including
KAUR and KGAT. FLT-PR boasted an average accuracy
of 0.27, while the other solutions failed to attain an aver-
age accuracy of 0.25. These achievements can be attributed
to the fact that our solution capitalizes on both the global
model, encompassing all consumers, and the local models
within their respective clusters. Furthermore, the incorpo-
ration of the self-attention mechanism from transformer
networks, which has demonstrated remarkable success in
various applications, including natural language processing,
also contributes to these commendable results. We can also
explain the promising results of the competitive solutions
(KAUR, and KGAT) in some cases by the fact that these
solutions consider the knowledge graph in recommending
the relevant items to the consumers. However, it is not always
straightforward to design a knowledge graph in a real-world
scenario. To evaluate the federated learning strategy used
in this research work, we measure the stability metrics pro-
duced by trust value and information transmission success
rate. Because hostile consumers may offer perturbation in
terms of recommendation updates, we assign each consumer
a trustworthiness score between 0 and 1. High-trust con-
sumers are close to 1, whereas low-trust consumers are near
0. To withstand data manipulation and replay threats, the
federated learning system built in this research effort is com-
pared to FLT [37]. With a rigorous evaluation of the trust
value of nodes, we can observe that the authority trust-based
model employed in this research will lead to this tremendous
achievement. Additionally, Figs. 4 and 5 show that their dis-
ruptive behaviors—whichmainly consist of flooding attacks
— are caused by repeatedly adding hostile consumers. The
proposed hierarchical confidence model in this paper exam-
ines the overall stability of node trust value and is based
on federated learning and trusted authority. The fundamen-

tal rationale is that the patterned trust scheme ensures that
genuine models among the set of consumers receive reliable
information even when adversaries are present. Consumers
would consumemore energy as a result of the flooding attack,
andby analyzing edge energy consumptionmodels,wemight
rapidly spotmalicious consumers. The edge paradigm,which
can decrease the energy use of the server, is the second con-
cept we implement.

Challenges and Future Directions

Addressing the challenges and exploring future directions
for using transformers and contrastive learning in a fed-
erated learning environment require a comprehensive and
multidisciplinary approach. Researchers need to develop
privacy-preserving communication protocols, enhance the
adaptability of models to handle diverse data, promote fair-
ness and explainability, and strike the right balance between
exploration and exploitation in personalized recommenda-
tions. Solving the following challenges will lead to more
robust and efficient personalized recommendation systems
in the federated setting, benefiting users while safeguarding
their privacy:

1. Data Privacy and Security: Data privacy is a critical
concern in federated learning since the data remains on
local devices, reducing the risk of centralized data expo-
sure. However, the use of transformers and contrastive
learning can potentially lead to privacy breaches. Trans-
formers, especially large models like BERT and GPT,
have a high capacity to memorize specific data sam-
ples during training [38]. If these sensitive details are
incorporated into the model, they may be leaked through
the model updates during federated learning. Differential
Privacy offers a solution by adding carefully calibrated
noise to the model updates before aggregation, ensuring
that individual data points remain indistinguishable [39].
Secure Multi-Party Computation allows computations
to be performed collaboratively across different devices

Fig. 4 Stability of trust
evaluation of FTL-PR, and FLT
framework with the
MovieLens-1M data
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Fig. 5 Stability of trust
evaluation of FTL-PR, and FLT
framework with the
Amazon-book data

without revealing rawdata to other parties [40]. Federated
Transfer Learning is another approach where pre-trained
models are shared, and fine-tuning occurs locally with
minimal data exposure [41].

2. Communication Overhead: Transformers have a large
number of parameters, leading to substantial communi-
cation overhead when exchanging updates in a federated
learning setting. This communication cost can impact
the efficiency of the learning process, particularly in
scenarios where communication is slow or resource-
constrained. Model Compression techniques can be
applied to reduce the model size without sacrificing
performance significantly [42]. Knowledge distillation
involves training a smaller model to mimic the behav-
ior of a larger model, effectively transferring knowledge
and reducing the number of parameters [43]. Quantiza-
tion methods represent model parameters using a smaller
number of bits, resulting in more efficient communica-
tion. Local training allows devices to perform multiple
iterations of training on their local data before commu-
nicating with the central server, reducing the frequency
of communication. Prioritizing communication based
on the relevance of user data can ensure that updates
from devices with more impactful data are transmitted
more frequently.

3. Heterogeneity of Data: In federated learning, devices
or servers may have data with different distributions,
quality, and scale, making it challenging to train a consis-
tent global model. Transformers and contrastive learning
methods may struggle to generalize well in such a het-
erogeneous environment. DomainAdaptation techniques
can be employed to adapt the model to different data
domains, minimizing the discrepancies between them.
Hybrid Models combine local and global modeling,
leveraging both general patterns learned from the global
model and user-specific preferences captured locally
[44]. Personalized ensemble methods aggregate multi-
ple personalized models, allowing the system to adapt to
different user segments effectively [45].

4. Cold Start Problem: The cold start problem is a signif-
icant challenge in federated learning when new devices
or users join the network with limited historical data.
Transformers typically require substantial data to learn
meaningful representations,which can hinder the person-
alization of new users. Meta-learning approaches can be
explored to use information from other devices or servers
to initialize models for new users, jump-starting the per-
sonalization process [46]. Active Learning techniques in-
volve actively querying users for feedback to gathermore
relevant data and refine recommendations quickly [47].
Federated Knowledge Transfer aims to transfer knowl-
edge from devices with more historical data to those with
less data, mitigating the cold start problem [48].

5. Bias and Fairness: Transformers can inadvertently
amplify biases present in the data, which can be exac-
erbated in a federated learning environment where data
comes from multiple sources. This raises concerns about
fairness in the recommendation process. Fair Aggre-
gation methods aim to develop aggregation schemes
that consider fairness constraints, ensuring that the final
model does not disproportionately favor certain groups
[49]. Fairness-aware Loss Functions incorporate fairness
objectives in the recommendation learning process, guid-
ing the model to make fairer recommendations. Bias
Mitigation techniques, such as adversarial debiasing, can
be employed to reduce bias in the learned representations
and improve fairness [50].

6. Adaptability toUserContext: Personalized recommen-
dations should consider the user’s current context and
dynamic interests. Transformers, by nature, do not inher-
ently handle real-time contextual information, which is
crucial for a comprehensive personalized recommen-
dation. Contextual transformers extend transformers to
incorporate real-time context information (e.g., loca-
tion, time, or user behavior) into the recommendation
process [51]. Federated context aggregation allows the
aggregation of context information along with user data
during federated learning, enhancing the adaptability of
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the model [52]. Contextual bandits in federated learning
leverage contextual bandit algorithms to make dynamic
and personalized recommendations in the federated set-
ting [53].

7. Interpretability and Explainability: Interpreting the
decisions made by transformer-based recommendation
systems is challenging, especially in federated learning,
where data comes frommultiple devices and the model’s
reasoningmay not be transparent. Attention visualization
involves visualizing attention weights in the transformer
to explain which parts of the input data are influential in
the model’s decision-making [54]. Rule-based post hoc
explanations generate rule-based explanations for indi-
vidual recommendations, providing insights into how
specific recommendations were made [55]. Federated
local explanations aim to provide explanations on indi-
vidual devices without sharing raw data, enabling a more
privacy-preserving approach to explainability [56].

Conclusion

In this research, an innovative approach to personalized
recommendations in consumer electronic applications is
presented. By investigating federated learning and trusted
authority, it addresses the issue of data confidentiality during
the training process. It also explores both transformers and
consumer clustering to address both data quantity and qual-
ity. The consumers are first grouped into comparable groups
using the dense embedding and k-means algorithms. Each
consumer’s local model is developed using data from their
area. The server acquires the local models from consumers,
along with the clustering information, and the integrity
of these models is verified by a trusted authority. Instead
of adhering to traditional federated learning systems, our
approach employs two distinct types of aggregation. The
first step involves amalgamating all consumer model data
to establish the global model. The second step entails com-
bining the models from each cluster to create a local model
of similar consumers. The consumers receive both models,
and they each choose which one should be utilized for per-
sonal recommendations. Themethod’s applicability has been
demonstrated by thorough trials utilizing MovieLens-1M
andAmazon-book. The outcomes demonstrate the suggested
method’s superiority over the baseline approaches, where
it achieves an average accuracy of 0.27 in comparison to
approaches that do not exceed 0.25. As a future perspective,
we plan to explore more advanced decomposition methods
[57, 58] for consumer grouping. Exploring other consumer
electronic-based applications with our method is also in our
future agenda.
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