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ARTICLE INFO ABSTRACT
Keywords: This paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and
Hybrid Deep Learning understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM

Home Based Monitoring

(STVL-HM) is a novel method that learns from sensor data that is jointly represented in space and time
Spatio-temporal visual learning

in order to robustify the HM process. We propose a hybrid model based on a Convolution Neural Network
(CNN) and Transformers. The CNN first learns the visual spatial features from various sensor data. The learned
visual features are then fed into the transformer, which captures temporal information by observing the sensor
status at various timestamps. STVL-HM has been tested using Kinetics-400, the real use case of human activity
recognition scenario for HM data. The results reveal the clear superiority of the STVL-HM compared to the
recent baseline HM solutions.

1. Introduction

Home-based Monitoring (HM) is the process of monitoring a per-
son’s health or well-being from their own home rather than in a clinical
setting [1-3]. This type of monitoring can be especially useful for
people who have chronic health conditions or who are recovering from
a disease or injury, as it allows them to receive care and support
while maintaining their independence. There are many different types
of home-based monitoring that can be used to track a person’s health
and well-being: (1) Remote patient monitoring [4]: This involves using
technology to remotely monitor a patient’s vital signs, such as blood
pressure, heart rate, and oxygen levels. This information can be trans-
mitted to a healthcare provider who can monitor the patient’s condition
and intervene if necessary. (2) Telehealth [5-7]: This involves using
video conferencing or other technologies to allow patients to commu-
nicate with healthcare providers from their own homes. This can be
especially useful for people who have mobility issues or who live in
remote areas, and (3) Wearable technology [8-10]: This involves using
devices such as fitness trackers or smartwatches to monitor a person’s
activity levels, sleep patterns, and other health metrics. Deep learning
can support home-based monitoring in automatizing the analysis of
data collected from various sensors and devices, such as wearable
sensors, health monitors, and IoT devices [11-13]. By using deep
learning algorithms, it is possible to detect patterns and anomalies in

the activities that might indicate deviations and changes in a person’s
health or well-being [14,15]. For example, a deep learning model could
be trained to analyze the data collected from a wearable sensor that
tracks a person’s heart rate, breathing rate, and other vital signs. The
model could be used to identify patterns in the data that suggest the
person is experiencing a health issue, such as an irregular heartbeat or
breathing difficulties. The model could then alert healthcare providers
or family members to intervene and provide care. Sensor fusion is the
process of combining data from multiple sensors in order to obtain a
more accurate and complete picture of a system or environment [16,
17]. This technique is commonly used in home-based monitoring to
gather data from different types of sensors and devices in order to
provide a more comprehensive view of a person’s health and well-
being [18,19]. For example, sensor fusion could be used to combine
data from a wearable heart rate monitor, a blood pressure monitor,
and a pedometer to provide a more complete picture of a person’s
cardiovascular health. By combining data from these different sensors,
it is possible to detect patterns and anomalies in the data that might not
be visible using a single sensor alone. Most HM-based solutions from
sensor fusion are recently developed, including:

1. Computer vision-based solutions: Computer vision-based so-
lutions can be used for HM to analyze data from visual sensors,
such as cameras or motion sensors [20,21]. This can provide
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valuable information about a person’s movements, posture, and
activities, which can be used to assess their health and well-
being. For example, computer vision algorithms can be used
to analyze video data from a camera to detect changes in a
person’s gait or posture, which might indicate mobility issues
or balance problems. This can be particularly useful for mon-
itoring elderly or disabled individuals who may be at risk of
falls or other injuries. Computer vision-based solutions can also
be used to monitor a person’s activities of daily living, such
as cooking, cleaning, and self-care activities. By using deep
learning algorithms to analyze video data, it is possible to detect
patterns in a person’s activities that might indicate changes in
their health or well-being. Solutions based on convolution neural
networks [22], generative adversarial networks [23,24], and
autoencoders [25] are examples of these solutions. CNNs and
autoencoders are both widely used for learning temporal fea-
tures. The choice between the two depends on the nature of the
data, the specific objectives of the task, and the characteristics
of the features we want to capture. CNNs are designed to be
translation invariant, meaning they can recognize patterns re-
gardless of their location in the input. This property is beneficial
in home-based monitoring tasks, where the timing of events may
vary, and the model needs to recognize temporal patterns at
different time points. Autoencoders may not inherently possess
this translation invariance property.

2. Sequence-based solutions: Sequence-based representation for
human-based monitoring involves analyzing time series data,
such as sensor data or physiological data, to extract mean-
ingful information about a person’s movements, activities, and
behaviors over time. This can be used to assess their health
and well-being, and to detect changes that might indicate a
health problem or other issue. For instance, extracting relevant
features from the time series data, such as the mean, standard
deviation, or frequency components of the signal. These fea-
tures can then be used as inputs to a machine learning model
to detect patterns or changes in the data. Solutions based on
recurrent neural networks [26], long-short term memory [27],
and transformers [28] are examples of these solutions. Trans-
formers and LSTM (Long Short-Term Memory) are both powerful
architectures for home based monitoring. However, transform-
ers have gained popularity and shown advantages over LSTM
in learning temporal features [29-31]. Indeed, in home-based
monitoring, the temporal relationships between different data
points (e.g., physiological signals, time series data) can span over
extended periods. Transformers, with their attention mecha-
nism, are more adept at modeling such long-range dependencies
compared to LSTMs. In addition, as the amount of data in
home-based monitoring increases, Transformers can be more
easily scaled to handle larger datasets, while LSTMs may become
computationally expensive and less feasible.

All the above solutions are effectively used in real-world appli-
cations of HM and achieved promising results in monitoring human
behaviors in real time. However, these solutions suffer from accuracy
when handling similar human behaviors like drinking and eating. We
assume that taking both spatial and temporal information features
in the learning can radically improve the HM performances. Differ-
ent hybrid architectures can be combined for learning spatial and
temporal information including LSTM and GNN, however the hybrid
CNN-transformer architecture is well-suited for handling multimodal
data, such as combining image data (from cameras) with textual data
(e.g., from smart home assistants or environmental sensors). CNNs han-
dle visual data effectively, while transformers excel at sequential and
textual data processing. Home based monitoring involves processing
both image and textual data, the CNN-Transformer is therefore more
suitable. We believe that a hybrid CNN and transformer network for
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home-based monitoring will be a potential architecture that can be used
to process and analyze data from various sensors and devices commonly
found in a home environment. Motivated by the success of Convolution
Neural Networks (CNN) in learning the spatial visual features, and
transformers in learning the temporal features, we propose a hybrid
CNN and transformer based model to learn spatio-temporal intercon-
nections between sensor readings for addressing the HM challenges.
The main contributions of this research work are given in the following:

1. We present a novel concept for solving HM systems called
Spatio-Temporal Visual Learning for Home-based Monitoring
(STVL-HM). It learns from both spatial and temporal data sensors
to improve the HM process.

2. We develop a hybrid model based on CNN and transformers. The
CNN first learns the spatial features from the different sensor
data. The learned features will be then injected into the trans-
former where the temporal information is captured by observing
the sensor status at different timestamps.

3. We evaluate and analyze the performance of STVL-HM in a
real-life use case of human activity recognition scenario for HM
data compared with the baseline HM-based solutions. The results
reveal the superiority of STVL-HM, where the achievement of
95% accuracy performance has been observed.

2. Home-based monitoring

Home-based monitoring refers to the use of devices, sensors, or
other tools to monitor a person’s health or well-being in their own home
or a non-clinical setting. This type of monitoring is often used to help
people manage chronic conditions, recover from an illness or injury, or
simply to stay healthy. Home-based monitoring has many applications
across different areas, including healthcare, wellness, and lifestyle.
Here are some examples of applications of home-based monitoring:

1. Chronic Disease Management: Home-based monitoring can help
patients with chronic diseases, such as diabetes, hypertension,
and heart disease, to better manage their conditions. Patients can
use devices to monitor their vital signs, such as blood pressure,
blood sugar levels, or oxygen saturation, and share the data with
their healthcare providers. Providers can use the data to adjust
treatment plans and medication dosages.

2. Post-acute care: After being discharged from the hospital, pa-
tients can use home-based monitoring to track their recovery
progress and prevent readmissions. Devices can monitor vital
signs and symptoms, such as fever or pain, and alert health-
care providers of any changes. Providers can provide remote
guidance and adjust treatment plans as needed.

3. Elderly Care: Home-based monitoring can help elderly individ-
uals to age in place and maintain their independence. Devices
can monitor activities of daily living, such as walking, bathing,
or eating, and detect falls or emergencies. Caregivers or family
members can receive alerts and provide assistance as needed.

4. Mental Health: Home-based monitoring can help individuals
with mental health conditions, such as depression or anxiety, to
monitor their symptoms and improve their overall well-being.
Apps can track mood, sleep patterns, or stress levels, and provide
personalized insights and recommendations.

5. Wellness and Lifestyle: Home-based monitoring can also help
individuals to improve their overall health and well-being. Wear-
able devices can track physical activity, sleep, and nutrition,
and provide personalized feedback and coaching. Apps can also
monitor environmental factors, such as air quality or temper-
ature, and provide recommendations for improving the indoor
environment.
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Human Activity Recognition (HAR) is one of the important steps
of the home-based monitoring. It has the goal to recognize human
activities. This study focuses on human-activity recognition in home-
based monitoring setting. In the following, we will give a formal
description of the human activity recognition problem:

Consider the set of human activities .4, a set of sensors S. The data
collected from S is defined in time windows W. HAR problem can be
considered as the following optimization problem:

: wo_xW
ngnyzwt(y AU M

where,

« 0 is the parameters of the model to be optimized.

+ yY is the set of activities of each time window in W.

+ y*W is the predicted activity returned by the trained model.
+ L(-) is the loss function used in the learning process.

Human activity recognition is a complex task and needs the inves-
tigation of advanced deep learning architectures for several reasons:

1. Variability: Human behavior is highly variable and can differ
from person to person and even from instance to instance for
the same person. For example, walking can vary based on the
individual’s stride length, walking speed, and walking style.

2. Sensor precision: Sensor data can be noisy and contain artifacts
that make activity recognition challenging. Different sensors can
also vary in their accuracy and precision, which can affect the
quality of the data and the accuracy of the recognition.

3. Ambiguity: Certain activities can be ambiguous and difficult to
distinguish from one to another. For example, walking and jog-
ging can have similar sensor data patterns, making it challenging
to differentiate between them.

3. Related work

STVL-HM is a hybrid model which considers the benefits of the
best models for solving HM tasks. Existing works can be roughly
grouped into two families: human activity recognition and spatio-
temporal learning. In the following, we will give insights into using
STVL-HM compared to studies belonging to both families.

3.1. Human activity recognition

A novel differential spatio-temporal LSTM (DST-LSTM) technique
is used to propose a new HAR system based on a pedal wearable
device [32]. The pedal wearable device is integrated in the tongue area
of the overall footwear to collect dorsum pedis pedal musculoskeletal
response data. The DST-LSTM is designed to classify five common ac-
tivity states based on the collected data: standing, sitting, floor walking,
down the stairs, and up the stairs. The dynamic discrepancy knowledge
of the collected information is used to construct a new Long short-term
memory unit. Multi-head graph attention networks are also used to ex-
tract the spatial correlation features of the collected data. Li et al. [33]
developed a methodology for recognizing a single user’s daily behavior
that can adaptively constrain detector vibration throughout human ac-
tivities in multitenant smart home situations. For HAR, they suggested
a data stream analysis method associated with the input frequency-
inverse structure. This method is used to assess the contribution of a
specific type of sensor to a specific type of activity recognition. They
then constructed a spatial matrix based on the arrangement of sensing
devices for context awareness and data noise reduction. Finally, they
proposed a HAR algorithm for daily behavior recognition that is based
on a longer time convolutional neural network and multi-environment
sensor data. Islam et al. [34] debuted a new streaming video blower
that concentrates on acquiring multiscale and multidimensional frames
for quick action detection. The method’s ultimate goal is to create
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a meaningful action recognition module by recognizing five multiple
kinds of action capture operators and thoroughly evaluating their im-
pacts on movement prediction over short and long time periods. It
gathered motion-type information across the entire clip using a multi-
differentiation modeling approach. Wu et al. [35] designed an efficient
method for capturing relationships within skeleton action scenes by
decomposing the spatio-temporal graph model efficiently. In particular,
for spatial simulation, they presented a movement relational classifier
that extends the channel dimension to improve modeling of motion
local patches as a supplement to traditional physical adjacency relation-
ships. To better fit the data characteristics, an enhanced user defined
tangible relationship model is also proposed. They developed an ef-
fective multi-focus temporal information seeking strategy for temporal
modeling that aggregates data from various temporal stretches and
adjacent regions. Ahn et al. [36] proposed a deep learning transformer
capable of representing two pass functionalities as a distinguishable
vector. First, frames are output as global grid tokens and skeletons
are output as joint location tokens from the input video and skeleton
sequences, respectively. These tokens are then combined to form multi-
class tokens, which are then fed into the designed transformer. The
encoder includes a full spatio-temporal attention module as well as a
suggested zigzag spatio-temporal attention module. Yang et al. [37]
created a hybrid network by combining graph convolution neural
network and convolution neural network. It not only makes good use
of structural information, but it also accurately models complex rela-
tionships between interframe joints. It investigated the relevant impact
of convolution neural network and graph convolution neural network,
and proposed a new gluing unit to assist the elegant integration of both
convolution neural network and graph convolution neural network
feature extraction modules while exploiting contextual information.

3.2. Spatio-temporal learning

The Spatio-Temporal Graph Convolutional Neural Network was
proposed [38], which models interactions as a graph and eradicates
the need for aggregation methods. A linear function was suggested
to incorporate social network interactions within the data structure.
The paths of nodes in the graph are simulated as a temporal graph to
substitute the aggregation layers. A weighted adjacency matrix is gen-
erated, in which the kernel function quantifies the influence of nodes.
Ali et al. [39] presented a graph deep learning model for extracting
influential spatio-temporal features from path data collected to nearby
correlated data. The data are represented by an undirected network,
with each node depicting a wind station. Each node in a long short-
term memory network harvests temporal information. A customizable
graph convolutional deep learning architecture was inspired by the
concentrated first-order estimation of spectral graph convolutions and
used the recovered temporal features to predict the time series of
the whole network nodes. It also captured both spatial and deep
spatial features of the correlated data with similar spatial information.
Deng et al. [40] proposed a convolutional adversarial network on a
spatio-temporal graph. To anticipate regularity in the input data, a
spatio-temporal generator is created, and a spatio-temporal discrimi-
nator is generated to check the correctness of the input sequence data.
There are strong correlations between neighboring data points in both
the spatial and temporal dimensions. As a result, a new module is
presented that employs the graph convolutional gated recurrent unit to
aid the GAN components composed by the generator and the discrim-
inator in gaining knowledge the spatio-temporal elements of the input
data. After adversarial training, the generator and discriminator can
be used as detectors independently, with generator modeling regular
evolution shapes and the discriminator supplying recognition require-
ments that differ with spatio-temporal variables. Wang et al. [41]
explored the new concept of multivariate correlation-aware multi-scale
prediction and suggested an emergent solution which is a spatio-
temporal graph convolutional network with feature correlation. Given
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Fig. 1. STVL-HM concept: The sensor data is first converted to a set of graphs of networks. Each graph represents the spatial features of the sensor locations with different
timestamps. Hybrid GNN and LSTM model is trained, where GNN is first performed to learn the spatial features from each graph, and LSTM is then executed to learn the temporal

features from a sequence of graphs.

a graph, a coarse-grained graph is created based on topology and
similarity among the nodes. Temporal learning is then provided for
dealing with both fine and coarse-grained network data. A cross-scale
graph convolution neural network is presented in the spatial domain
to contemporaneously learn and fuse multi-scale spatial variables. For
successfully capturing intra- and inter-scale temporal correlations in the
temporal domain, a cross-scale temporal network built of structured
attention is created.

3.3. Discussion

To our knowledge, existing works for HM suffer from the van-
ishing gradient problem and do not capture long dependency. We
propose a hybrid convolution neural network and transformer model
to learn spatio-temporal interconnections between sensor readings,
inspired by the achievement of the hybrid combination of convolution
neural network and transformers in handling spatio-temporal data.
The detailed principles of the designed concept are described in the
following section.

4. STVL-HM design: Spatio-temporal visual learning for home-
based monitoring

4.1. Principle

The process begins with raw sensor data, which could originate
from various sources such as cameras, LiDAR, or other sensors. These
raw data streams are then preprocessed and converted into a series
of frames. Each frame represents a collection of images captured at
different timestamps, effectively encapsulating the temporal aspect of
the data. To exploit the visual information within each image, a CNN
is applied to learn the spatial features. The CNN’s convolutional layers
analyze local patterns and structures, enabling it to recognize objects,
textures, and visual patterns within the images. This step is crucial for
extracting high-level visual features that can help understand the scene
and objects captured by the sensors. Once the spatial features have been
learned by the CNN, the temporal aspects of the data are addressed
using a transformer model. The transformer model is known for its su-
perior ability to capture long-range dependencies and temporal patterns
within sequential data. In the context of STVL-HM, the transformer is

employed to learn temporal relationships between consecutive frames
in the sequence. By doing so, the model gains an understanding of how
the visual information evolves over time. Our hybrid CNN-Transformer
architecture is a two-step network. Both models are then jointly trained
using a large dataset of annotated sensor data. During training, the
model optimizes its parameters to effectively fuse spatial and temporal
features, allowing it to generate robust representations of the input
data. The end result is a sophisticated model that can efficiently capture
both static and dynamic aspects of the visual scenes captured by the
sensors. Different number of epochs/iterations are used for both CNN
and transformer architectures. The CNN is first trained using the CNN
epochs, the extracted features will be injected and training using the
transformer epochs. Fig. 1 visually illustrates the overall architecture of
STVL-HM, showcasing the flow of data from raw sensor inputs through
the frame generation, CNN-based spatial feature extraction, and finally,
the transformer-based temporal feature learning.

4.2. Data collection

Home-based monitoring involves collecting data from individuals
in their own homes. The type of data collected will depend on the
specific purpose of the monitoring. We will integrate several strategies
for collecting data, including:

1. Wearable sensors: We will use fitness trackers or smartwatches
to collect data on physical activity, heart rate, sleep, and other
vital signs. These sensors can be worn continuously, providing a
continuous stream of data.

2. Remote monitoring devices: We will use blood pressure mon-
itors, glucose monitors, or pulse oximeters to provide real-time
data on vital signs and other health indicators.

3. Smart home devices: We will use smart home devices, such
as smart scales to collect data on weight, body composition,
and other user behavior indicators. These devices can be in-
tegrated with other monitoring systems, allowing for a more
comprehensive view of an individual’s behavior.

At the end of this step, we will have a heterogeneous data com-
posed of time series, and images captured in different timestamps
(t.1,,...,1,). At each timestamp, we have the representative data d@)
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captured by the different sensors. We also used the MinMax normal-
ization method to normalize the captured data. It is crucial step for
better learning process. The value 1 is assigned as the highest feature
value and the value 0 as the lowest value. The binary equivalents of
each value of 0 and 1 are calculated. For each data image d; € d(), the
normalization is determined as follows:

Normalize(d;) = {(x',Vx € d;,MinMax(x, d;)} (3]
where,

. X — min(d,;)
MinMax(x, d;) = 3)

max(d;) — min(d;)
min(d;), and max(d;) are the minimum and the maximum values of all
data values in 7.

4.3. Spatial visual learning

This step aims to capture the visual features of each data in d(r)
using CNN. The process of computing visual features with a CNN
can be broken down in the following: Let d; be the normalized input
data, which can be represented as a three-dimensional tensor of size
(H,W,C), where H is the height, W is the width, and C is the number
of channels. For instance, if the captured data is an image then it will
directly injected into the tensor. However, if it is a time series then
a conversion is required before injecting it to the tensor. We used the
Gramian Angular Fields (GAF) [42] to encode the time series as images.
GAF encapsulates the correlation structures and uses the output to
generate 2D images. A time series signal is presented in GAF as a polar
coordinated system, and the angles of every data point are transformed
into matrices. Let K be a set of learnable kernels of size (K,, K,,,C, 0),
where K, and K,, are the kernel height and width, and O is the number
of output channels. Each kernel K; in K is convolved with the input
data d; to produce a feature map F;, where / ranges from 1 to O. This
operation is defined as:

F=K@Qd,Pb 4

where () denotes the convolution operation, € is a matrix addition, 5,
is a learnable bias term for the /th filter, and the output feature map f;
is of size (H’, W’, 1), where H’ and W’ are the height and width of the
output feature map. The output feature map F, is then passed through
a non-linear activation function g, which introduces non-linearity into
the model. We use the commonly known activation function, named
ReLU, and which is defined as:

g(x) = max(0, x) ()

where x is the input to the activation function. After each convolutional
layer, a pooling layer is often used to downsample the output feature
map. We used the most commonly pooling operation which is max-
pooling. It aims to extract the maximum value within a pooling window
of size (F}Z) from the input feature map. This operation is defined as:
F/

F = max 1 Fiygoiys (6)
where F/ is the output of the pooling operation at ith position, s is
the stride (i.e., the distance between adjacent pooling windows), and
Fiy(j_1)s is the input feature map value at position i + (j — 1)s.

At the of this step, we have the set of data features F’, each element
F] € F' represent the visual features of the image I;.

4.4. Temporal learning

To detect temporal dependencies in the series of spatial embeddings
produced by the CNN network, we design a transformer-based network.
The most popular deep learning algorithms for sequential data are
RNNs. Traditional RNNs can only detect long-term dependencies be-
cause of gradient vanishing or explosion problems. Because they fixed
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this issue, variations like LSTM’s (Long Short-Term Memory) [43] and
GRU'’s (Gated Recurrent Units) [44] were considered the most popular.
Although LSTM and GRU perform equally well on a variety of tasks,
GRU'’s structure becomes less complex and can be trained more quickly,
hence it was chosen for this study. The main drawback of LSTM, and
GRU is the computationally expensive which are considered more com-
plex than traditional RNNs and require more computational resources
to train. Another important factor is the limited context of LSTMs
and GRUs where they have a fixed memory size and are only able to
capture a limited amount of context from the input sequence. This can
lead to difficulties in modeling long-term dependencies in the data.
To overcome these issues, we propose in this section a transformer-
based network. Transformer is a type of neural network architecture
that are able to effectively capture long-range dependencies in sequen-
tial data. The key innovation of the Transformer is the self-attention
mechanism, which allows the model to attend to different parts of the
input sequence when making predictions. In the following, we present
our adaptation of the transformer for analyzing the sequence of features
F’ derived in the previous step:

1. Patch Embeddings: In natural language processing and com-
puter vision, one of the key challenges is effectively handling
high-dimensional input data. To tackle this issue, a power-
ful technique known as patch-based embeddings has emerged,
which has proven to be highly successful in various deep learn-
ing models. The process begins by taking each input feature
F] € F' and dividing it into a set of non-overlapping patches.
Each patch is essentially a small, localized portion of the input
feature that captures specific patterns and details. By breaking
down the input into these patches, we gain the ability to extract
valuable information from different parts of the data. Following
this patch division step, a linear projection is applied to each
patch, effectively flattening it into a vector representation. This
projection step is crucial as it allows the model to transform
the patch data into a format suitable for further processing. The
resulting set of patch embeddings, denoted as P, now represents
the input data in a more structured and compact manner. These
patch embeddings P are then fed into the transformer encoder
as input sequences.

2. Encoder: The Transformer encoder consists of a stack of several
identical layers, each of which contains multi-head attention and
feedforward neural networks. The multi-head attention mecha-
nism allows the model to attend to different parts of the input
patches P and capture long-range dependencies. Assume we
have a query matrix Q, a key matrix K, and a value matrix V.
The multi-head attention operation can be represented as:

MultiHead(Q, K, V') = Concat(head,, head,, heady) X wo 7

where head; is the output of the ith attention head:
head; = Attention(Q x W2, K x WK .V x W) 8)

and Attention is the scaled dot-product attention function:

T
Attention(Q, K, V) = Softmax <Q i(/f > XV 9
d

Note that W,.Q, WiK , and WI.V are learnable parameter matrices
for the ith attention head, and W is the learnable output
projection matrix. The feedforward neural network (FFN) is an
essential component of the transformer’s encoder layer. It is
responsible for introducing non-linearity and transforming the
output of the self-attention mechanism within each layer. The
FFN is typically applied separately to each token in the input
sequence P. Note that in our transformer, we will not use the
decoder since the output in home-based monitoring will be a
fixed-length vector.
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3. Positional Encoding: By incorporating positional information
into the input patches, our model can effectively understand
the spatial relationships between different image features. To
achieve this, we introduce positional encodings, which serve as
an additional set of learned embeddings representing the spatial
location of each patch within the image. The process of adding
positional encodings begins with generating unique positional
vectors for each patch in the image. These positional vectors are
designed in a way that captures the relative positions and spatial
distances between patches. The positional encodings are then
added to the original patch embeddings before being fed into the
transformer encoder. To elaborate on how this works, consider
an image divided into an N x N grid of patches. Each patch
is represented by an embedding vector that encodes its visual
features. Additionally, for each patch, we generate a positional
encoding vector that encodes its spatial location. These posi-
tional encodings are designed to complement the visual features
and are learned along with the rest of the model during the
training process.

4. Output Head: The encoder, which is responsible for processing
the input sequence and creating contextual representations, gen-
erates a set of hidden states representing the input tokens. These
hidden states need to be transformed into meaningful predictions
or probabilities for the home-based monitoring tasks. The output
head typically consists of a fully connected layer, also known as
a dense layer, which connects every neuron in the previous layer
(the final hidden states) to every neuron in the output layer. This
fully connected layer is followed by the softmax function. The
softmax function takes the raw output scores and converts them
into a probability distribution, making it easier to interpret the
model’s predictions as probabilities.

4.5. Loss function

To train our hybrid CNN-Transformer model, we combine the
cross-entropy loss and the MSE loss into a hybrid loss function
hybridloss(y, 9). We introduce a hyperparameter A that controls the
trade-off between the two loss components. The hybrid loss is defined
as:

hybridloss(y, ) = (1 — ) - crossentropy(y, ) + A - mse(y, ) (10)

Where:

+ y represents the ground truth labels.

+  represents the predicted values from the model.

crossentropy(y, ) is the cross-entropy loss between the ground
truth labels y and the predicted values $. This loss is commonly
used for classification tasks.

mse(y, §) is the mean squared error loss between the ground truth
labels y and the predicted values . This loss is commonly used
for regression tasks.

A is a hyperparameter that controls the trade-off between the
two loss components. It determines the relative importance of the
cross-entropy loss and the mean squared error loss in the overall
hybrid loss function.

By using a hybrid loss function, the model can benefit from both the
advantages of cross-entropy loss for classification and the advantages
of mean squared error loss for regression. The hyperparameter A allows
the model designer to adjust the balance between the two losses based
on the specific requirements of the task at hand. For example, setting
4 = 0 would make the model solely rely on cross-entropy loss (ideal for
pure classification tasks), while A = 1 would make it rely solely on mean
squared error loss (ideal for pure regression tasks). Values of 4 between
0 and 1 create a trade-off between the two loss components, making
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Table 1

Hyperparameters for STVL-HM.
Hyperparameter Value
Batch size 32
Learning rate 0.0005
Dropout rate 0.15
Number of convolutional layers 5
Number of transformer layers 3
Kernel sizes [3, 5, 7]
Weight regularization L2 (0.0001)

it suitable for tasks that have characteristics of both classification and
regression.

5. Performance evaluation

A robust set of experiments has been carried out to evaluate the
performance of STVL-HM solution. A case study of human activity
recognition has been analyzed in this experiment.

5.1. Experimental setting

We used the Kinetics human action video dataset, a large-scale video
dataset designed for human activity recognition research. It contains
more than 650,000 video clips of human actions, each lasting around
10 s, covering 400 action classes. The actions are diverse and include
various human activities such as sports, cooking, and playing musical
instruments, among others. The videos were collected from YouTube
and filtered to ensure that they only contained human actions. The
dataset was first released in 2017 and has since been updated with
new releases. We used the latest version, Kinetics-700 [45], which was
released in 2019 and includes 700 action classes. It has become a stan-
dard benchmark for evaluating human activity recognition algorithms.
The videos in the Kinetics dataset are labeled with their action class,
and each action class has at least 400 video clips. The dataset also
includes a train-validation-test split, with around 240,000, 20,000, and
40,000 video clips, respectively. The Kinetics dataset has been widely
used in the computer vision community to develop and evaluate human
activity recognition models. It has been used as a benchmark dataset
for several large-scale action recognition challenges.

To evaluate the performance of STVL-HM, several factors have been
take into account, including:

1. Accuracy: This is a measure of how well the solution correctly
identifies the human activity being performed. This measure is deter-
mined by model accuracy. It is often the most important metric for
evaluating the performance of a HAR model. Higher accuracy means
that the model is able to correctly identify the activity being performed
more often, and lower accuracy indicates that the model is making
more incorrect predictions.

2. Recognition rate: This refers to the ability of the solution to per-
form well on new, unseen data. It refers to the proportion of instances in
the dataset that are correctly classified by a human activity recognition
model. It is often used as a measure of the model’s performance and is
typically expressed as a percentage. For example, if a model correctly
identifies 100 activities out of a total of 150 instances in the test set,
the recognition rate would be 67%. The higher the recognition rate, the
better the performance of the model.

In addition, we used the greedy optimization for hyperparameter
tuning [46] which involves iteratively selecting and updating hyper-
parameters to find the best-performing model on a validation dataset.
This approach can be computationally expensive but provides a simple
and effective way to optimize model performance. Table 1 shows the
optimal hyperparameters of the STVL-HM used in the experiments.
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Fig. 2. Accuracy performance of STVL-HM for different CNN epochs (from 100 to 1000), different transformer epochs (from 100 to 1000), and for different loss rate {0.01, 0.05,

0.08, 0.09}.
5.2. Baselines

We used these two recent baseline solutions for experimental com-
parisons:

1. DST-LSTM [32]: It is intended to classify five common activity
states: standing, sitting, floor walking, down the stairs, and up the
stairs. The collected information’s dynamic discrepancy knowledge is
used to build a new Long short-term memory unit. The spatial correla-
tion features of the collected data are also extracted using multi-head
graph attention networks.

2. Hybridnet [37]: It not only makes good use of structural in-
formation, but it also accurately models complex interframe joint re-
lationships. It investigated the relevant impact of convolution neural
network and graph convolution neural network feature extraction mod-
ules while exploiting contextual information, and proposed a new
gluing unit to assist the elegant integration of both convolution neu-
ral network and graph convolution neural network feature extraction
modules.

5.3. Accuracy performance

Several experiments were carried out to evaluate the accuracy
performance of the STVL-HM method. We varied both the number of
epochs in transformer, and CNN from 100 to 1000, and we also varied
the loss rate from 0.01 to 0.09. Fig. 2 reported the obtained results.
We observed that the model accuracy is increased while enhancing
the number of epochs of transformer, and CNN. For instance, when
the number of epochs in transformer is set to 100, the number of
epochs in CNN is set to 100, and the loss rate is set 0.01, the model
accuracy is less than 33%, however when the number of epochs in the
transformer is set to 1000, the number of epochs in CNN is set to 1000

and the loss rate is set to 0.01, the model accuracy is greater than 84%.
Furthermore, the results indicates when increasing the loss rate, the
model accuracy decreased, where the model accuracy is high for loss
rate equal to 0.01, and 0.05, and low for 0.08 and 0.09. From these
results, we will set the following parameters in the remaining of the
experiments: Transformer’s epoch is set to 1000, CNN’s epoch is set to
1000, and the loss rate is set to 0.01.

5.4. Recognition rate performance

Several experiments has been performed to evaluate the recog-
nition rate performance. Two different tests have been carried out.
We compare the STVL-HM with baseline human activity recognition
systems including DST-LSTM, and Hybridnet. We varied the percentage
of selected input features from 10% to 100%, and the percentage of
training data from 20% to 100%. Fig. 3 reported the obtained results.
From these results, we can observe a clear superiority of the STVL-
HM compared to the baseline methods (DST-LSTM, and Hybridnet),
whatever the scenario used in the experiments. These results confirm
the applicability of the proposed methods in recognizing human activi-
ties from unseen observations. These results are achieved thanks to the
efficient combination of both transformers, and CNN in learning the
spatio-temporal visual information from different data sensors highly
correlated. STVL-HM can be used as alternative data fusion solutions,
where a sequence of images is generated and trained from multi-data
sources.

6. Conclusion

This paper introduces a novel model for Home-based Monitoring
(HM) that empowers examination, monitoring, and comprehension of
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Fig. 3. Recognition rate performance of STVL-HM compared to baseline methods (DST-LSTM, and Hybridnet) for different data sizes.

home-based activities. Spatio-Temporal Visual Learning for HM (STVL-

Declarations

HM) is a new technique for robustifying the HM process by learning

from sensor data that is collectively represented in space and time. We
propose a CNN and Transformers hybrid model. The CNN begins by

Ethical and informed consent for data used: No ethical issue for
data used.

learning visual spatial features from sensor data. The visual features

that have been learned are then injected into the transformer, which
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