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Abstract

In this thesis, the feasibility of a deep-learning-based terrain characterization method

was assessed in comparison to a traditional analytical approach. Both solutions were

implemented on a wheeled mobile robot equipped with a standard stereo depth

camera, an IMU, and a GPS unit. Classical technique was derived from existing

literature, while a deep-learning based implementation was developed alongside

the navigation system and data processing utilities. The study conducted extensive

experiments in a real-world setting located in an unstructured forest environment

and gathered results in the form of energy consumption and roughness. While both

methods proved effective at navigation from point A to point B, inherent limitations

highlighted avenues for future advancements. Key findings include the need for an

extensive, high-resolution dataset to optimize machine learning performance and a

more robust navigational with global perception. The outcomes of this research pave

the way for future exploration into refining terrain characterization techniques for

more diverse environments and applications.

Keywords: terrain characterization, deep-learning, wheeled mobile robot,

autonomous navigation, traversability
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Chapter 1

Introduction

1.1 Motivation

Ever since the Mars Exploration Rover ”Opportunity” got trapped in a sand dune

on its mission’s sol 447 (Angelova et al., 2007), every subsequent rover sent to the

surface of Mars has continually become more capable at navigating safely to increase

our reach in planetary exploration. While needlessly wandering off into dangerous

terrain is never the objective, many of the most desired scientific curiosities can be

found in the most challenging areas (Li & Lewis, 2022). However, episodes such

as the Fukushima Daiichi nuclear disaster have proven that our robotic capabilities

are not yet mature enough for an effective disaster response when needed (Nagatani

et al., 2013). Among these is the capability to navigate through surroundings that

were unexpectedly altered or previously unseen, and avoid hazardous areas in order

persevere towards the mission’s objective.

While a regular car will perform optimally on dry asphalt road, it would take more

effort and an experienced driver to operate the same type of car on a dirt road. In

a similar fashion, a mobile robot set to operate in an environment that is predictable

and known, will generally be designed with that kind of environment in mind. In

contrast to this, unstructured environments can consist of unexpected and previously

unseen occurrences. This means that a robot will have to exhibit additional sensing

and navigational capabilities to be successful. As autonomous robots are envisioned

to operate in remote or inaccessible environments, their potential applications often

demand uninterrupted functioning without any human intervention. Any setback
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for the robot in such situations could lead to mission failure or significant delays.

Therefore, it becomes paramount for the robot to have the capability to navigate

challenges, anticipate issues, and find solutions autonomously.

Mobile robot navigation is an active subfield within robotics that consistently

lead to exciting results, such as pushing the boundaries of planetary exploration

or increased safety and efficiency at manufacturing facilities (Robotnik, 2023).

However, some mobile robot applications encounter higher difficulty imposed by

their surrounding terrain than others, leading to the challenges previously mentioned.

Terrain classification and characterization are both possible techniques that aim to

solve that problem. The former gives a robot the ability to distinguish specific terrains

that lie in front of them, such as grass, gravel or concrete. The latter expands on

this concept by assessing a robot’s ability to traverse any given part of a terrain with

regards to its locomotion. In either case, a mobile robot that can autonomously reason

and navigate across the terrain it needs to traverse can take on objectives that would

otherwise not be feasible without extensive human intervention.

A range of other applications in field environments such as agriculture, surveying,

defence, and search and rescue, indicate the potential for mobile robots with higher

degree of navigational capabilities. A recent DARPA Grand Challenge aims to bridge

the gap of the ability to travel across off-road terrain between autonomous vehicles

and manned vehicles (DARPA, 2022). While indoor environments are not the focus of

this project, unstructured terrain can still be present in certain scenarios, such as the

one presented and challenged by ELROB (2022).

Finally, there are several ethical considerations that need to be taken into account

when developing any robot. Often, the most discussed issue with regards to robotic

solutions is that they could negatively affect the labour market. Current examples of

such scenarios are manufacturing robots in factories, which have reduced the need for

human labour. This is not fully applicable for this project, since mobile robots that

are able to navigate unstructured terrain would generally be employed in inherently

hazardous activities to aid humans. However, mobile robot possessing the required

capabilities for those applications could also find use for military ends (Lin et al.,

2011). Similar to autonomous drones used for military purposes, more capable ground

vehicles could present another alternative for destruction, and give advantages to
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those with access to this technology. On the other hand, the mobile robots could

also assist in peace operations such as explosive disposal, transporting wounded to

safety, or reconnaissance of dangerous regions. Additionally, economical implications

are a common point of contention with regards to planetary rovers. Technology used

for planetary exploration is often considered too costly with insignificant benefits

in the public’s eyes (Lin et al., 2011). But in the context of mobile robots in

unstructured terrain, the accomplishments within this criticized field can also be

utilized in terrestrial applications.

1.2 Problem statement

The goal of the thesis following this report will be to explore various areas within

the fusion of computer vision and robot navigation, specifically aimed towards

autonomous operation of mobile robots in unstructured terrain. This will be achieved

with map building and robot adaptation through visual-based terrain characterization.

Previously developed solutions based on two distinct approaches will be adapted,

adjusted and implemented on a wheeled mobile robot platform. This includes

a traditional analytical method, and a machine learning method. The wheeled

mobile platform will carry a suite of sensors, RGBD camera, inertial measurement

unit (IMU) and a GPS unit, to provide information of its surroundings. Upon

complete implementation, testing and comparison will be completed between both

configurations in a number of real-world scenarios on unstructured terrain. Based on

this process, this project will attempt to answer the following research question:

How do deep learning-based and classical analytical terrain characteriz-

ation methods compare in real-world navigation for a wheeled mobile

robot?

To address the research question effectively, we have established the following

constraints. These constraints not only ensure consistency and integrity in our

experiments but also facilitate a focused examination of the potential research

contributions.
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1. Environmental Constraints:

• Forest terrain: All empirical assessments and experiments will be conducted

exclusively within an urban forest environment in the Viken region in

Norway.

• Weather conditions: Experiments are restricted to specific weather conditions,

avoiding extremities such as heavy rain, snow, ice or mud.

• Lighting conditions: Tests will be performed only during daylight hours and

under consistent ambient light to minimize variations in visual sensor input.

2. Operational Constraints:

• Robot speed: The robot will maintain a constant speed and turning radius

throughout all tests to ensure that results are not influenced by velocity

variations.

• Human intervention: Once an experiment begins, no human intervention is

allowed, except for the initial placement of the robot at the starting position.

• External software: The robot operates solely based on the software loaded at

the start of the experimentation phase.

3. Hardware Constraints:

• Fixed hardware configuration: All experiments are conducted with a pre-

defined hardware setup chosen at the onset of the project. No alterations

or additions to this hardware setup will be made during the course of the

experiments regardless of their viability.

• Onboard data processing: All computational tasks and data processing

required for navigation will be done onboard the robot, leveraging the initial

hardware configuration.

These constraints are designed to establish a controlled environment for the

experiments, ensuring that observed outcomes are primarily a result of the tested

navigation techniques and not external variables.

4



Chapter 2

Background

The following chapter will present the main aspects of the relevant theory, as well as

provide an overview over previous and related works. This is divided into three main

sections that constitute the most important parts of realizing this master thesis project.

2.1 Wheeled mobile robots

Wheeled mobile robots, among the most common configurations in robotics, offer a

balance of stability, simplicity, and efficiency. Their design and functionality have

evolved over the years to cater to a variety of applications, from industrial automation

to planetary exploration.

2.1.1 General overview

Mobile robots are robots with a locomotion system used for generating motion to

traverse their surroundings. An important branch of this field are legged robots, that are

inspired by effective biological approaches. Meanwhile, the class of mobile robots that

employ wheels, tracks and other types of locomotion systems, are human inventions.

Without the initial starting point provided by evolution, the latter categories of mobile

robots currently exhibit a limited degree of mobility in extreme terrain (Li & Lewis,

2022). Li and Lewis (2022) argue that this is due to the current lower degree of

understanding of motion generation in complex ground terrain compared to motion

based on flight aerodynamics and underwater hydrodynamics. Since biologically

inspired locomotion systems are more adept at overcoming challenging terrain, it can
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be applicable to replicate the same ideas that have developed in nature (Siegwart et

al., 2011). A particular example would consist of an actively adaptable suspension

in a similar fashion to legged mobile robots and their articulated limbs, which can

lead to improvements regarding tip-over stability, reach and footprint (Iagnemma &

Dubowsky, 2004). The difficulties of replicating biological systems into mechanical

solutions were addressed by Siegwart et al. (2011).

Excluding sensing and navigation of a mobile robot, its general motion capabilities

largely depend on the wheels and drive system used (Tzafestas, 2014a). In addition,

holonomic constraints, or a lack thereof, will decide the degrees of freedom available

to a system. Holonomic constraints are dictated by the dynamics of a mobile robot,

and determine the amount of degrees of freedom available to a system.

The types of wheels used for mobile robots can be categorized as conventional and

special wheels (Tzafestas, 2014a). On one end of the spectrum of the conventional

wheels are the motor powered wheels that are often fixed in the forward and reverse

direction with regards to the robot’s reference frame. On the other end are the non-

powered castor wheels that are free to rotate perpendicular to the wheel’s rotational

axis, often off-set from their attached joint. Identical rotation can be achieved by the

powered wheels, but this will depend on the robot’s drive system. Special wheels are

designed to achieve additional range of motion in multiple directions, specifically used

for omnidirectional mobile robots. These include universal, mecanum and ball wheels

(Tzafestas, 2014a).

Rubio et al. (2019) describe that wheeled mobile robots can be classified by the drive

system they employ: differential drive, car-type, omnidirectional and synchro drive.

Understandably, each type of drive will be most suitable for certain applications, as

mentioned by the author. With regards to mobile robots in unstructured terrain, the

literature within this subfield almost exclusively utilizes differential drive and car-type

wheeled mobile robots as their experimental platforms, in addition to tracked mobile

robots.

Differential drive robots consist of at least two powered wheels situated on each

side of a platform, fixed in the direction of motion. In the case of two-wheeled

differential drive, a castor wheel is used for balance and stability (Tzafestas, 2014a).

Wheels are independently powered and controlled to generate motion either along a
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circular curve, rotation around a fixed point, or simply forwards or backwards. The

type of motion depends on the wheel speed and driven direction of each side of a

robot. For example, differing speeds in the same direction result in motion along a

circular curve, while same speed in differing directions result in stationary rotation.

Skid steering is a special implementation of the differential drive for tracked mobile

robots, and differs only in the advantages and disadvantages related to the use of tracks

as opposed to wheels (Tzafestas, 2014a).

Car-type mobile robots, also referred to as Ackerman steering, is the standard

steering utilized in cars. A minimum of one pair of steered wheels allows for rotation

along a minimum radius, as this drive system cannot turn while stationary. There are

several combinations of how many pairs of wheels are steered or not steered, which

affects the rate of turn of a vehicle. The main design concept of Ackerman steering is

that the rotational axes of every wheel meet in a common cross point while turning, in

an effort to avoid geometrically caused wheel slippage. (Tzafestas, 2014a).

Examples of robotic platforms used in research that also conducted experiments

in real-world environments can be seen in figure 2.1. The most common type in the

reviewed literature is a four-wheel differential drive and tracked skid-steering mobile

robots for terrestrial applications, and six-wheel steered platforms with a rocker-bogie

suspension (commonly used for Martian rovers) for planetary applications.

2.1.2 Non-holonomic constraints

Non-holonomic constraints inherently restrict the motion possibilities of wheeled

mobile robots. These limitations arise primarily due to the no-slip condition at the

wheel-ground interface and the fixed orientation of the wheels relative to the robot’s

chassis (Kolmanovsky & McClamroch, 1995). Specifically, while wheels are designed

to roll forward without slipping, they commonly resist motion perpendicular to their

axis of rotation, preventing all sideways movement that isn’t caused by slipping.

Additionally, the fixed orientation of the wheels means that without changing direction

or trajectory, lateral motion is impossible. Such constraints pose significant challenges

for path planning and adaptive navigation in autonomous robots. Depending on a

robot’s drive system, movement can be realized despite these constraints.
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(a) (b) (c)

(d) (e)

Figure 2.1: (a) Pioneer 2-AT (Ojeda et al., 2006) (b) Husky (IEEE, 2011) (c) Pluto

(Helmick et al., 2009) (d) PackBot (Tzafestas, 2014a) (e) maXXII (Galati & Reina, 2019)

2.1.3 Mobile robot navigation

The navigation of a mobile robot from one place to the other in any environment

consists of a number of tasks in order to realize an autonomous movement.

This includes sensing, map building and map interpretation, self-localization, path

planning and motion control (Siegwart et al., 2011).

Figure 2.2: Diagram of the tasks that comprise autonomous robot navigation in the

context of terrain characterization
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2.2 Motion control of wheeled mobile robots

Control in the context of mobile robots refers to the problem of facilitating locomotion

in the space they operate in. Control methods are often implemented at the lowest

level of hardware, in order to determine the forces and torques necessary to reach a

desired destination. In the explored literature, control as a term is referred to in varying

degrees of complexities. Whereas some methods only facilitate a low-level control of a

mobile robot’s motion system, other include trajectory tracking and/or path following

which account for high-level control. Finally, all the methods in the following section

are considered only in the context of non-holonomic mobile robots.

2.2.1 Classical control methods

Over the years a number of linear and nonlinear control methods have been developed

and utilized for various applications in mechanical control systems. Below are brief

introductions of the most established classical methods in the literature that utilize

analytical models in the context of mobile robots.

Other classical control methods for mobile robots that are not currently presented

in this report are Kalman filter and sliding mode control, as those were not employed

extensively in the reviewed literature.

PID controller

A common control method in the space of various engineering fields is the PID

controller, used for regulation of variables such as flow, temperature or speeds. The

implementation of the controller can be composed of up to three distinct control

functions, namely proportional, integral, and derivative. A closed control loop is

formed where a feedback procedure allows for a continual calculation of the error

between a single input and a single output. Consequently a controlled response is

applied in order to stabilize the output process (Spong et al., 2020).

PID controllers have been used extensively for various mobile robot applications,

and are still widely utilized due to their relative simplicity and reliability. However,

their limitation to a single input and a single output and linear nature restrict their use

to less complex applications. Shijin and Udayakumar (2017) and Malu and Majumdar

9



(2014) use PID controllers as a low-level speed control of DC motors for a two-wheel

differential drive mobile robot.

Model predictive controller

In contrast to PID controllers, a model predictive controller (MPC) takes into account

changes in multiple inputs at the same time. The model predictive control algorithm

attempts to control a system by using its dynamics to calculate the optimal future

control actions that are within the operational constraints (Findeisen & Allgöwer,

2002). It takes into account the past actions performed by the system within a specified

control horizon and predicts changes that can be applied to the variables to reach the

desired values. This task is attempted to be done within a specified prediction horizon,

and is continually repeated at every time step after a change is applied.

As a more advanced form of a control method, MPC was shown to provide superior

motion control performance compared to a traditional PID controller (Rezaee, 2017).

Rezaee (2017) also explores the effects of each MPC tuning parameter in applications

of non-holonomic mobile robots. However, the work is based on the system’s linear

model applied to a known and structured environment. Nascimento et al. (2018)

state that linear MPC controllers are more mature and successful within a number

of applications, but the increased non-linear nature of a mobile robot traversing an

unstructured terrain could lead to unsatisfactory results. A number of works explore

and implement a non-linear MPC controller for a mobile robot (Hu et al., 2019; Lim

et al., 2008; Ostafew et al., 2016). As explored in Park et al. (2015), a traditional

numerical approach to optimization of a non-linear MPC algorithm is computationally

too intense with regards to off-line implementation. All of the aforementioned MPC

solutions therefore employ various machine learning techniques to aid with this issue.

Lyapunov function-based controller

Lyapunov function-based controllers are a class of non-linear control methods based

on the use of system specific Lyapunov stability functions. According to Tzafestas

(2014b), such a controller can determine if a dynamical system with control inputs can

reach an equilibrium and be stabilized. This methodology can be applied with just

the kinematics of a system, for example to adjust wheel velocities of a nonholonomic
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mobile robot (Fareh et al., 2016). However, the same paper also utilizes this method in

conjunction with the system’s dynamics in order to track and follow a desired path.

Backstepping controller

Dumitrascu et al. (2011) and Zidani et al. (2015) propose controllers for non-holonomic

mobile robots based on the backstepping control method. In its essence, a non-linear

system is broken down into lower order subsystems. First an initial stable subsystem

is found that is paired with a Lyapunov stability function to verify system stability. The

same procedure is then repeated for each consecutive subsystem that is controlled by a

chosen feedback controller. The whole process constitutes a recursive method of going

”backwards” to reach an overall stable system. While some non-linear terms can be

lost through the process, it provides more flexibility compared to other fully linearized

approaches (Vaidyanathan & Azar, 2021).

2.2.2 Machine learning control methods

A disadvantage of the aforementioned control methods is the required knowledge of

the model of the controlled system. In contrast, the emergence and wider adaption of

machine learning techniques allows for adaptive control where classical methods are

improved upon with a relaxed model requirements. Learning based methods are also

at the forefront of this area, employing variety of neural networks to more effectively

utilize gathered data.

The fusion of classical control methods such as PID or MPC and various machine

learning techniques has been explored in order to combine their respective advantages

(Carlucho et al., 2017; Hu et al., 2019). Both works present experimental results that

perform better than their classical counterparts and ease the process of tuning. In

addition, techniques like this can be utilized when it is difficult to obtain a model

of robot’s dynamics. The capability of obtaining a model of the system’s dynamics

based on data instead of analytical derivations and numerical calculation is common

also among learning based methods that are not combined with traditional controllers

(Farias et al., 2020).
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Fuzzy Logic-based control

While based on its long history, a fuzzy logic based controlled is often referred to as

a part of the classical methods (Maeda et al., 1991). Fuzzy logic controllers operate

on the principle of making decisions based on linguistic variables rather than precise

numerical values. In the context of mobile robots, these controllers first convert sensory

inputs into fuzzy values. For instance, an obstacle’s proximity might be translated into

categories like ’near’ or ’far’. A rule base, crafted from human expertise, then guides

the robot’s actions. Fuzzy logic is often combined with machine learning (Tzafestas,

2014c), similarly to how other classical control methods are optimized by trained

models. For instance, a combination of reinforcement learning and fuzzy logic was

used to provide non-linear control for a manufacturing mobile robot (Prabhu & Garg,

1998).

2.3 Traversability assessment

The ability to assess the nature of a robot’s surroundings is a crucial part of mobile

robots. Their main objectives could be to navigate safely through or around features,

while avoiding surfaces that would limit the robot’s ability to generate or maintain

momentum. The two overarching methodologies in this space are terrain classification

and terrain characterization. The process of traversability assessment constitutes the

action of map building for path planning purposes.

As mentioned before, the success of a mobile robot in unstructured terrain will

depend on its ability to maximize vehicle mobility across multiple surfaces of varying

terrain characteristics. This is commonly attempted in parallel with reducing power

consumption to carry out locomotion, in order to preserve often limited amount of

on-board power storage.

For the purpose of this project, unstructured terrain will refer to an outdoor en-

vironment with irregular or previously unseen properties and features. Unstructured

terrain can be present in for example off-road areas, planetary surfaces or damaged

manufactured environments.
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2.3.1 Terrain classification

Terrain classification methods are concerned with identifying and determining the

terrain type either during or prior to traversal into a number of candidate terrain

classes. The disadvantage of using only classes is limiting the information gained

about the terrain at transitions between certain types of terrain classes, where abrupt

changes of traversability could occur (Angelova et al., 2007). Additional losses of

information could include variations of each terrain class, which can change due to

external factors such as weather or lighting conditions. Groups of classes generally

consist of surface types (e.g. grass, concrete, gravel, rocks) or of regions described by

various thresholds of traversability (e.g. traversable, non-traversable).

2.3.2 Terrain characterization

Terrain characterization is an approach to the same problem of traversability assess-

ment. However, terrain types that can be classified into categories can further vary

and behave differently from their nominal state depending on multitude of external

conditions (e.g. dry concrete vs. wet concrete). Therefore, it is often not sufficient to

only classify a terrain, but it is needed to extract all the relevant features and attributes

of a terrain that can affect the mobile robot’s ability of motion. The literature encom-

passes two major methods of accomplishing terrain characterization, namely through

the continuous measurement of wheel slip during traversal, and predictions based on

visual sensor data made ahead of traversal.

Wheel slip can be defined as the lack of progress of a mobile robot while traversing

a surface. The impacts of wheel slip can vary in magnitude depending on the physical

interactions between the robot’s wheels and the surface (Bekker, 1969a), and cause

negative outcomes such the inability to reach a destination or to maintain a consistent

motion.

Terrain features are assessed based on key surface characteristics such as roughness,

slope, discontinuity and hardness. Slope can be defined as the inclination of the

underlying surface with regards to the mobile robot’s angular tilt around it’s center

of mass, and is the main contributor towards tip-over hazards (Seraji & Howard,

2002). Discontinuity refers to steep inclinations of detected surfaces in relation to a
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reference ground surface. For example, a cliff or a step will have an angle of around

ninety degrees from the ground plane a mobile robot is traversing. Other less severe

discontinuations of the terrain will be obstacles, often denoted as either positive or

negative obstacles. While positive obstacles correspond to features that are protruding

from the ground plane, negative obstacles are sunken into the ground plane (Talukder

et al., 2002).

2.3.3 Sensors

For the purposes of terrain characterization, there are two main categories of sensors

for information acquisition about the surrounding terrain.

Proprioceptive sensors

Proprioceptive sensors capture the states of the robot itself, which are generally used

to measure the terrain parameters during traversal. Proprioceptive sensors are used to

determine the position, velocity, forces, or energy applied to or by the robot (Martin,

2018). These sensors, which record data like wheel odometry, motor power, and battery

voltage, enable mobile robots to directly measure the traversability of terrain they’re

navigating.

However, these sensors come with inherent limitations. One primary limitation is

the need for the robot to traverse the terrain before making any assessments, posing

risks of the robot becoming immobilized in challenging terrains. Another challenge

is the highly specific nature of proprioceptive data, which captures the immediate

interactions of a particular robot with its environment. Types of sensors that fall under

this category include motor encoders, potentiometers, gyroscopes and compasses.

Exteroceptive sensors

Exteroceptive sensors are used for remote observation of environments and objects

found within them. From the robot’s perspective, exteroceptive sensors are mainly

absolute measurement sensors, which generally have a lower acquisition frequency

than proprioceptive sensors (Papadakis, 2013). Common examples include 2D and 3D

lidar, RGBD cameras, stereo cameras, acoustic sensors, and pressure sensors.
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The primary advantage of exteroceptive sensors lies in their ability to provide

expansive environmental awareness. They enable robots to grasp a broad view

of their surroundings, facilitating interactions and navigation in complex terrains.

However, the reliance of these sensors on external conditions presents challenges.

For instance, a lidar’s performance might degrade under foggy circumstances, and

cameras could encounter difficulties in low-light conditions. Additionally, the vast

amount of data generated, especially by high-resolution sensors such as 3D lidar or

RGBD cameras, necessitates considerable computational power, potentially straining

the robot’s processing capabilities (Borges et al., 2022).

2.3.4 Map building in terrain characterization

Mapping the various factors that could affect vehicle’s ability to traverse on a terrain

were previously been done in a number of ways. Similarly to control methods,

methods of map building that model terrain characteristics can be split into two main

categories. Traditional methods employing an analytical approach and numerical

calculations, and various methods based around machine learning algorithms.

Analytical methods

As previously mentioned, the topic of terrain characterization for traversability

assessment is an especially interesting topic for applications within planetary rovers.

Several of the early works propose solutions to better accommodate planetary rovers

to the environments present on celestial bodies, and thus mainly focus on prediction

and detection of wheel slip.

An early method proposed by Ojeda et al. (2006) to detect wheel slip during a

robot’s operation is based on the calculation of ”motor currents versus rate of turn”

(MCR) curves. The hypothesis of the work is that a skid-steering robot on a softer

surface will induce wheel slip while performing turning maneuvers, in addition to

longitudinal and lateral slip that occurs during traversal caused by wheel and soil

interactions. Therefore, the correlation between motor power draw, rates of turn and

soil parameters can indicate the amount of slip that’s affecting the robot’s motion. The

data used for terrain assessment is gathered by an IMU unit, and is paired together

with motor torque and voltage sensors. The analysis and computation of MCR curves
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was derived from the founding work on wheel-soil interactions (Bekker, 1969b).

While successful experiments of the paper showed potential applications, this

method has the disadvantage of not providing an environment map for navigation

purposes. However, since MCR curves contain important soil information of a specific

terrain, they can be used to predict potential power requirements or to determine

motion resistance (Ojeda et al., 2006). Similar analytical method based around the

a similar concept was published by Ishigami et al. (2006), focusing on wheel slip

occurring exclusively on slopes. A novel approach of this category for a non-planetary

rover was presented in the works of Galati and Reina (2019) and Espinoza et al. (2021).

The challenge of proprioceptive slip detection and estimation methods like those

mentioned above, is the inability to avoid areas with high risk of excessive slip

(Helmick et al., 2009). Remote knowledge and prediction of potential hazards is

therefore a valuable asset that allows a mobile robot to optimize its speed, torque and

path, leading to minimized risk and power consumption. This issue was first reported

by Angelova et al. (2007), where visual data based on depth imagery is correlated

with modeled slip behaviour to generate maps of the local environments. While slip

behaviour for any given surface type is modeled by an analytical approach using

the robot’s kinematics, the imagery data is classified into six classes, provided by a

machine learning algorithm.

Broggi et al. (2005) propose one of the earlier exteroceptive methods of traversab-

ility assessment for mobile robots, where data from two cameras is used to calculate

the V-disparity between the left and right camera output, revealing edges of obstacles.

Most commonly however, the literature trends to pair the use of imagery data with

terrain classification as opposed to terrain characterization, classifying object either by

their type or size (Filitchkin & Byl, 2012; Khan et al., 2011).

A more explored exteroceptive method without the use of classifiers utilizes the

use of lidar sensors. Liu et al. (2019) perform scans of a robot’s surroundings in a

polar system, detecting positive, negative or hanging obstacles, as well as straight

slopes. The height a slope difference between adjacent lidar points are calculated

and indexed by an algorithm into a map of obstacle points, highlighting traversable

regions. The differentiation between types of obstacles is done similarly in other lidar

based techniques (Larson et al., 2011; Reddy & Pal, 2016). When a planar surface
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is scanned, the measured lidar points have close to the same values. In the case of

positive or hanging obstacles, the lasers of a lidar hit their surface sooner than the

surface of the ground plane in the sensor’s field of view. For negative obstacles the

opposite is true, since the surface of them is further away from the sensor than the

observable ground plane. The solution proposed by Lourenco et al. (2020) is partly

based on the same standard mapping technique utilizing multiple lidar sensors to

build a 2D costmap. However, in this case the cost isn’t calculated based on sensory

data, either exteroceptive nor proprioceptive. Instead, the mechanical effort that any

particular point in terrain could exert on the autonomous vehicle is derived from the

vehicle’s model. This cost is integrated together with a gradiant that quantifies the

slopes withing the original 3D visual data. This information is encoded into a 2D

gridmap, which is a common mapping format used by open source robotics software

called ROS. This work however mostly focuses on the effects of slopes, and not more

variable terrain profiles.

An example of a scenario where visual exteroceptive terrain assessment is not a

viable option with regards to obstacles, was explored in the article by Ordonez et

al. (2020). The authors propose a combination of a proprioceptive and exteroceptive

traversability assessment with a special focus on pliable vegetation. Pliable vegetation

refers to obstacles that visually might be considered as non-traversable, but in reality

can be interacted with in a safe manner and traversed through. Two different

approaches are presented, on two distinct platforms that consist of a lidar and stereo

cameras, paired with other equipment respective to their approaches. Upon detection

of vegetated areas through its vision systems, the first solution then characterizes an

area upon traversing through it. The second solution carries a robotic manipulator to

probe an area before a traversal is initiated. The gathered data is used to model the

surrounding terrain based on the the dynamics of individual stems of the encountered

vegetation. This results in a map in the form of a 3D voxel grid depicting the motion

resistance in the robot’s vicinity. A separate robot adaptation mechanism is used to

train a prediction model based on these grids, in order to quantify the difficulty of

traversal through any given vegetated area for path planning purposes (Ordonez et

al., 2020).
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Machine learning methods

One of the earlier works that introduced the use of machine learning for traversability

assessment, published by Howard and Seraji (2001), utilizes a combination of artificial

neural networks and fuzzy logic to detect four terrain attributes of roughness, slope,

discontinuity and hardness. This is mostly done by edge detection and detection of

correlation in image data. This proposal was not tested on an experimental setup, nor

does it provide a merged traversability map for path planning purposes.

The exteroceptive sensing techniques for terrain characterization mentioned in the

previous section on analytical methods have been further extended by the use of

machine learning for map building purposes. While previous solutions generally

employed only one type of sensor, Sock et al. (2016) state that this approach may

not be sufficient for traversability assessment in unstructured terrain. The authors of

that work, as well as Zhou et al. (2022) combine the use of lidar sensor with visual

cameras, as both are able to provide complementary information. Zhou et al. (2022)

mention that lidar sensors are more proficient at identifying the characteristics of solid

structures and cameras provide a way to detect the type of surface that a robot can

expect to traverse, and thus also the terrain’s attributes. This suggestion is in line with

the observation that utilization of only visual cameras is generally applied to terrain

classification. However, the two above-mentioned works do not integrate terrain

attributes in the generated traversability maps.

A recent approach for traversability assessment paired with path planning employs

deep reinforcement learning to generate elevation maps through the use of lidar data

(Weerakoon et al., 2022). First terrain features that indicate reduction of stability based

on predefined pitch and roll limits are learned in a virtual environment. The learning

results are merged with a normalized elevation map computed from raw lidar data into

a cost-map. Feasible trajectories are then picked by a least-cost algorithm. Conducted

experiments spanned multiple elevation magnitudes across softer and firmer surfaces.

Terrain attributes of the various surface types were not taken into account. In contrast,

a similarly novel method in the area of unsupervised learning accounts for the effects

of the surface being traversed (Sathyamoorthy et al., 2022). The effects of terrain

roughness, hardness and surface texture are put into the forefront over the effects

of slopes and obstacles. These terrain attributes are extracted from real-world RGB
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images and correlated with IMU and odometry data in a learning process in order to

compute a cost map for path planning purposes. It is stated by the authors that the

learning process on a previously unknown surfaces is generally completed in 20 to 25

minutes, lower than comparable methods. The effects of the surface are undoubtedly

a major factor in assessment of traversability, as well as the effects of a terrain’s slope

and obstacles (Seraji & Howard, 2002). An ideal solution would therefore combine

each main aspect of the two methods described in this paragraph.

The past and recent works in terrain characterization show that visual and depth

information has been a prominent way of gathering information about the terrain.

Vulpi et al. (2021) hypothesise that traversability of any given terrain can be assessed

exclusively on the back of proprioceptive data in combination with deep neural

networks. A number of learning approaches are presented in their work to establish

which one of them would be the most suitable for traversability assessment. The

learning and experimental processes were conducted across four surface types of a

flat profile.

Terrain characterization specific to planetary rovers could benefit from machine

learning based methods due to the rich dynamics and high non-linearity of wheel

slip in soft soil (Lopez-Arreguin & Montenegro, 2021). This is due to the fact that

supervised and unsupervised learning methods were shown to be able to approximate

robust non-linear models without any prior knowledge. Alternatively, a novel

machine learning approach of modeling soil proprieties (Dallas et al., 2020) proved

highly accurate with reduced computational complexity that allows for more efficient

implementations in numerical methods such as MPC.

Lopez-Arreguin and Montenegro (2021) express interest in machine learning

methods that do not require processing of visual data in order to avoid the higher

computational requirements such workloads entail, as it could have important

implications with regards to the current constraints of planetary exploration. However,

the authors have also mentioned that the commonly employed proprioceptive sensors

such as motor currents and IMU cannot adequately represent all types of wheel slip.

So far there have not been any proposals for methods that accurately estimate and map

traversability parameters in soft soil based on those factors.
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Chapter 3

Implementation

The following chapter presents the practical aspects of this project, encompassing

design considerations, iterative refinements, applied methodologies, and hands-on

procedures. Through this process, this project transitions from abstract principles to

the implementations enabling in-field experiments.

3.1 Overview

The aim of this thesis is to explore the challenges, solutions and drawbacks of terrain

characterization in unstructured environments for a wheeled mobile robot. One of

the main areas of focus will be on discerning the best approach to utilize sensory

data for navigation within unstructured environments, enabling the exploration and

traversal of unstructured terrains. As stated in the research question outlined in

the introductory chapter, two distinct techniques for terrain characterization will be

implemented and evaluated in a real-world testing environment. This encompasses

both classical analytical technique and machine-learning based technique to address

terrain characterization.

The comparison between classical and machine learning techniques for terrain

characterization is driven by two main objectives. Firstly, it aims to assess the

advantages and disadvantages of each approach. Second, it needs to be researched

which one of them is better suited for this task. On the one hand, classical techniques

are known to be simpler, more robust, and easier to employ due to the ability to

handcraft them for a specific scenario. Conversely, while machine learning techniques
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may potentially yield superior performance, they necessitate a considerable quantity

of high-quality data and an extensive learning period.

The presentation of obtained results, coupled with the discussion, will provide

the research community with insights into the prospective trajectory of future

developments in this particular area of autonomous navigation.

Once implementation of the necessary hardware and software is in place, field

experiments will be conducted at a real-world testing site to assess the efficacy of each

software suite. The software covered in this thesis is based on two primary categories:

classical methods derived from established literature that has been used in a similar

application, and a machine learning approach formulated during the course of this

thesis.

This report outlines the methodology for each step that was taken during

implementation, testing and comparison. The strategies and considerations taken

during testing and data collection are described to give additional context about the

progress from start to finish.

3.2 Choice of research methodology

Any potential applications of mobile robots in real-world environments are met with

the difficulty of unknown and often changing variables. Such conditions mean that

there is a substantial amount of variance from one scenario to another. This is an

important consideration when it comes to possible alternatives for the experimental

testing required to answer the research question of this thesis. The increased variance

in real-world environments naturally leads to an expansive pool of possible elements

to test for.

The implemented solutions for terrain characterization capabilities for a mobile

robot will be tested in a real-world environment through several field experiments.

With the aim of testing in the most unstructured terrain available, an area in a forest

will provide a multitude of terrain challenges that a mobile robot would be expected

to handle autonomously.

The implemented solutions for terrain characterization capabilities of a mobile

robot are set to undergo evaluation in real-world settings via a series of field
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experiments. The overarching intent behind these tests is to place the system in the

most unstructured and challenging terrain. To this end, a forest area has been selected

as the testing ground, given its inherent complexities and terrain challenges. Such an

environment possesses a myriad of obstacles and conditions that a mobile robot would

be anticipated to navigate and manage autonomously in any real-world applications.

The terrain complexities found in real-world environments can be broadly categor-

ized into obstacles such as trees, rocks, and gaps; ground textures that range from flat

and rough to slippery; and surface hardness variations, which include soft, hard, and

viscous terrains. All the needed terrain characteristics can naturally be found in such

environments, which makes it a desired location for testing. This approach is partic-

ularly beneficial for the scope of this thesis, ensuring that the findings derived from

the testing environment closely mirror real-world scenarios, maintaining minimal de-

viations. A comparable strategy, involving real-world field experiments with a mobile

robot, has been previously employed by Siva et al. (2021).

Real-world testing, while invaluable for its authenticity and depth, might pose

a number of limitations. First and foremost, it presents logistical challenges.

Securing a suitable environment and managing unpredictable elements like weather

can complicate the process. Additionally, real-world tests are often more time-

consuming and resource-intensive compared to the alternatives. Unlike in controlled

or digital environments, replicating exact conditions for repeated tests can be nearly

impossible, leading to potential inconsistencies in results. While real-world data offers

unparalleled insight into the actual performance of a system, gathering and analyzing

such data can be cumbersome, and there is always a risk of encountering situations

that were not anticipated in the design phase. Furthermore, ethical and environmental

considerations may also come into play, especially when testing in natural habitats,

potentially causing disturbances to local ecosystems.

An alternative method would be to perform tests in a specifically designed

testing field. This approach offers higher flexibility, providing more control over

environmental variables. However, for the objectives of this thesis, such an approach

is not particularly favorable. As mentioned previously, there is significant value in

exploring how the technology fairs in a naturally occurring environment to gain a

better understanding of the effects of previously unforeseen scenarios. A natural
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environment, in contrast to the controlled, laboratory-like conditions of a custom

testing site, introduces a broader spectrum of variability across all factors influencing

a mobile robot’s operation.

In contrast to hand-crafted testing sites, testing with the help of physics simulation

engines can accommodate the need for testing a large amount of possible scenarios.

Given the digital nature of these simulations, a multitude of test runs can be

executed either concurrently or over extended durations, surpassing the possibilities

of physical tests. This approach not only facilitates the evaluation of numerous

scenarios independently but also paves the way for creating a comprehensive digital

representation of the environments encountered in the real-world. With the software

thatis available, it is feasible to make accurate digital models of the hardware being

used during this thesis.

However, difficulties emerge with regards to possible discrepancies when results

from simulated physics environments are transferred over to real-world ones. This

phenomenon, aptly called the ’reality-gap’, can lead to diverse performance outcomes

depending on the intricacy of the simulations (Jakobi et al., 1995). With appropriate

levels of noise added to the simulation, physical robotic systems have been shown

to perform accurately to their simulated counterparts. Further issues arise when the

modelled systems interact with other objects through physical contact, which is a

complex problem yet to be solved optimally in a simulated environment (Collins et

al., 2019). This complication poses great difficulties to solving terrain characterization

in simulation, especially since unstructured forest terrain presents numerous obstacles

with which a robot must interact.

3.3 Navigation of the robot

For the purpose of assessing each terrain characterization technique based solely

on its capacity to discern terrain information, a unified navigation module was

implemented for all testing scenarios. This module’s design centers around a

straightforward navigation mechanism, ensuring no added intricacies are introduced

into the overall system. Such a simplified design ensures compatibility with both

terrain characterization techniques.
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The consistent performance of this module is pivotal to the integrity of the testing

process. By operating navigation tasks uniformly across all terrain characterization

techniques, it becomes an instrumental tool in guaranteeing a balanced comparison

among them. Any potential biases or variations originating from the navigation

process itself are therefore minimized, ensuring that any differences observed can be

attributed directly to the terrain characterization methods being evaluated.

Each employed terrain characterization technique provides similar kind of output.

It is essentially three values of differing scales representing the terrain characteristic

as calculated by their own processes. The navigation receives these three values, that

can be equated to either turn left, keep driving straight, or turn right. The idea is to

attempt to follow that most desirable area.

All of the implemented terrain characterization techniques provide outputs that

are analogous in nature, despite being derived from their distinct computational

processes. Specifically, each technique yields three values which serve as decision

indicators for the robot’s movement. They correspond to three possible actions: turn

left, continue straight ahead, or turn right. The underlying principle is straightforward:

the system uses these values to identify and subsequently follow the most desirable or

navigable terrain. Additionally, this decision-making approach serves a dual function

as a form of low-pass filtering or smoothing. By prioritizing the most consistent terrain

suggestions over sporadic or anomalous readings, the system inherently filters out

potential noise or outliers in the data.

Complementing the terrain-based navigation system is a GPS component designed

to guide the robot toward its desired endpoint during a traversal. The inclusion of the

GPS component aims to refine the robot’s trajectory, ensuring that it remains aligned

with its destination while navigating through varying terrains. The onboard GPS

module provides data that aids in the calculation of the robot’s azimuth, an angle in

reference due north. Concurrently, the angle between the robot’s current coordinate

location and the target endpoint coordinate location is computed with the help of a

python package. The loop then determines the angle offset by comparing the robot’s

current heading direction with its azimuth. This offset is ascertained by subtracting

the two aforementioned angles. An angle offset of zero implies that the robot is on a

direct path toward its endpoint. A positive angle offset indicates a leftward deviation,
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suggesting the robot should steer left to realign. Conversely, a negative angle offset

indicates a rightward deviation, signaling a need for the robot to steer right.

Within the navigation framework, the GPS-derived offset is not just a standalone

variable; it serves as a scaling factor that modifies the terrain metrics provided by

the terrain characterization techniques. By implementing the GPS offset as a scaling

factor the system ensures a consistent influence of GPS measurements across both

terrain characterization techniques, irrespective of the ranges of their outputs. The

core objective of integrating GPS into the navigation process is to regulate the robot’s

decision-making based on the end goal. If, for instance, a more desirable terrain would

deviate substantially from the end point, the GPS-derived scaling factor will increase

the perceived ’cost’ or undesirability of that path, thus guiding the robot to consider

alternate routes that align better with the target destination.

In essence, the system is programmed to prioritize end-point proximity over

terrain quality, but only beyond a certain threshold. Until that threshold is reached,

the robot will always favor better terrain, as long as it remains generally oriented

towards its destination. The exact cut-off values in terms of degrees of deviation at

which the GPS offset outweighs terrain advantage are not known. This dual-priority

approach ensures that while the robot aims to reach its end point efficiently, it does not

compromise safety by opting for challenging terrains just because they might offer a

more direct route.

The implemented navigation system, while efficient for the specific objectives of

this research, presents certain limitations worth noting. Primarily, the system is

confined to localized decision-making and lacks the capability to consider terrain

and navigation challenges on a global scale. This restricts the robot’s capacity to

make longer-term navigation decisions. Furthermore, even within its local purview,

the system does not employ any intricate path-planning algorithms. As a result,

it does not anticipate or account for concurrent terrain features, leading to overall

sub-optimal navigational choices. The system operates in a more serial manner,

reacting to individual terrain elements rather than mapping out a comprehensive path.

Lastly, the simplicity of its navigation actions further confines its adaptability by being

limited to a predefined turning radius and speed. Such limitations, while acceptable

within the scope of this project, highlight areas for potential future improvements and
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refinements in navigation design.

3.4 Dataset collection

In order to explore the research questions of this project, sensory data will be required

for the training of a deep-learning terrain characterization technique. At present,

the public domain does not offer any datasets that meet both the volume and

requirements specific to this thesis. Given this gap, the decision has been made to

generate a unique dataset tailored to our requirements. This data collection will be

executed using the current hardware and will be overseen by an operator manually

controlling the equipment. This process will also provide an avenue to explore the

potential requirements and challenges a dataset collection for terrain characterization

application might entail.

There are a number of categories of data recorded by the various sensors:

1. Stereo Camera Output:

• RGB image stream: Compressed RGB images intended mainly for user

reference that also be be utilized for terrain classification, recorded at 6

frames per second.

• Depth image stream: Processed by the camera, it yields a point-cloud

detailing terrain topography, recorded at 6 frames per second.

2. IMU Data:

• Orientation: Represents the robot’s orientation in space relative to its

starting position with yaw being aligned to the magnetic north. The data

is in form of quaternion values.

• Acceleration: Captures linear acceleration in the x, y, and z axes, with the

influence of gravity filtered out.

3. GPS Data: Records the device’s geographical location, tying data to specific

ground coordinates. The coordinate system used by the GPS module is called

Local tangent plane coordinates.
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4. Robot’s Status:

• BMS: Monitors battery performance, total energy use and battery voltage

during the robot’s operation.

• Motor status: Reports rotations per minute as well as the current being

drawn by the robot’s motors.

To ensure compatibility with the selected navigation system, the dataset’s structure

is tailored around the prediction requirements of the trained model. Each dataset entry

consists of three integral components:

1. Visual component: This captures the terrain ahead of the robot, offering an

exteroceptive perspective. It provides insights into a yet-to-be-traversed area at

the moment of recording.

2. Action: At each dataset entry point, the operator determines the robot’s direction

it takes: left, straight, or right. This direction, set for a predetermined duration

and velocity, is called an ’action’. The entire trajectory taken by the robot during

this action must be visible in the initial recorded image.

3. Cost value: This final component quantifies the challenges encountered during

the executed action, providing a measure of the difficulties inherent in traversing

that specific terrain section.

In essence, this structured approach ensures that every dataset entry provides a

comprehensive snapshot of the robot’s interactions with its environment.

The idea behind combining the image data with an action stems from the

ability of deep learning networks to discern patterns of movement within an image

corresponding to any of the three actions. A trained model would then be used to

create predictions for a particular input for each possible action, which is then used

for navigation. With this dataset’s structure, we also avoid the intricate challenge of

aligning what the robot perceives externally via the camera with the data coming from

the proprioceptive sensors on-board the robot that records data for that area at a later

stage.

One of the main challenges in the progression of this project was in determining

the ideal combination of dataset volume, fidelity, and format to produce a reliable
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model. For visual information, the decision was made to transform the data into a

2D heightmap. To determine the cost value, calculations of energy usage per meter

were derived from recorded IMU acceleration data and the motors’ reported current

readings. While the usage of the cumulative energy spent during an action was an

option, this was complicated by the occurrence of wheel slip and mobility resistance

caused by obstacles. Such irregularities could distort the dataset, making certain

entries less representative when compared to more nominal data entries with minimal

external disruptions.

The selected format of data was chosen to be consistent with the classical

technique’s implementation, ensuring a fair and insightful comparison. While

there might be other data formats more optimal for machine learning-based terrain

characterization, the lessons learned from constructing this dataset can offer insights

applicable to various other structures. Throughout the dataset’s development phase,

numerous adjustments were made, particularly with regards to image resolution and

the calculations of the cost metric.

With the above mentioned structure in mind, the first dataset was created.

However, as will be later described, this dataset introduced a number of difficulties

during initial stages of model training. The considerations and steps undertaken

during each iteration of the dataset’s development are elaborated upon in the following

subsections.

3.4.1 First iteration of dataset

The primary objective during the construction of the initial dataset was to ensure a

comprehensive number of data entries and an extensive representation of the test

environment. Entries originating from most locations within the test area were

included, regardless of their complexities or viability for the use with a wheeled

mobile robot. This included not just optimal paths but also unfavorable scenarios,

such as instances where the robot might become trapped due to an obstacle or

attempting to ascend a slope beyond its capability. This strategy was used in an

effort to cover a wide array of potential real-world challenges. While efforts were

made to ensure diversity by revisiting similar terrains multiple times, the emphasis

was on maintaining randomness. This extensive data gathering resulted in a dataset
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comprising roughly five thousand entries.

The first dataset encountered several setbacks, with the most notable being

inadequate training performance due to a high tendency towards overfitting. The

complexity stemming from the high-dimensional raw sensor data was a major

contributor to these problems. Additionally, the use of IMU acceleration data as

the basis for distance calculations might have incorporated inaccuracies, hindering

the network’s capability to generalize effectively. Even with multiple training

attempts using this dataset, the achieved accuracy was insufficient for the demands

of autonomous navigation.

Another key consideration with the initial dataset was the sheer volume of data

entries required to capture the vast dimensionality of the environment. Preliminary

experiments using synthetic data (detailed further in chapter ??) hinted that

the dataset size might not need to be overly extensive. Although both datasets

— synthetic and real-world — aimed to leverage edge detection as the primary

tool for identifying major terrain changes, the real-world dataset posed a unique

challenge. While higher pixel values did signify elevated terrain, the cost attributed

to each pixel was not as straightforward to determine as in the synthetic dataset.

This complexity was exacerbated when considering the noisy and inconsistent

readings from proprioceptive sensors, such as motor currents and IMU-based distance

estimates. Such complexities hint at the potential need for a significantly larger volume

of real-world data entries, compensating for the inconsistencies and detail loss.

In summary, the volume of training data required for a machine learning system to

consistently perform in real-world scenarios surpassed our initial estimates.

3.4.2 Second iteration of dataset

In an attempt to implement a working solution to answer the research question

presented by this thesis, a second, revised dataset was created.

The guiding principle for the second dataset shifted from emphasizing data volume

and coverage to emphasizing the consistency and applicability of each data entry. In

other words, a greater care was put towards recording data entries that were only

much more beneficial towards a viable navigation strategy. This entailed deliberately

excluding entries that portrayed scenarios where an autonomous system would face
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considerable mobility challenges. Simultaneously, there was an emphasis on ensuring

consistent nominal mobility, meaning instances where there was significant wheel slip

or resistance at the beginning of data recordings were minimized. A combination of

these adjustments not only delineates the dimensionality to capture the most relevant

information, but also mitigates factors that could introduce inaccuracies in the dataset’s

numerical attributes.

In an effort to further address issues with excessive dimensionality, it was decided

to reduce the resolution of the final images from 32x32 to 16x16. While validation tests

highlighted that this solution, though beneficial for training performance, had its own

set of drawbacks. Specifically, the diminished resolution hindered the model’s ability

to discern subtle variations in the terrain. While it performed well in areas with larger,

more distinguishable obstacles present in the input images, it failed to recognize and

adapt to smaller terrain variations. This discrepancy was particularly pronounced on

flat gravel terrain.

As learned from initial training done on this dataset, the reduction of image

resolution can indeed simplify the training process, and it can simultaneously

compromise performance, especially in specific terrain profiles. A deeper dive into

determining the precise resolution and dataset size that balance detail accuracy and

computational efficiency is crucial.

3.4.3 Processing of 3D point-cloud data for deep learning

The robotic system is equipped with a single stereo depth camera, which generates a

continuous stream of 3D point-cloud data. Each point within this cloud has coordin-

ates relative to the camera frame, along with a depth measurement, representing the

point’s distance from the camera lens. Both of the terrain characterization techniques

employed in this study leverage this information. However, each method processes

the data differently and requires in distinct formats for their respective inputs.

The classical terrain characterization method directly employs the 3D point-cloud

without requiring additional pre-processing. In contrast, when using a deep learning

network, as intended in this study, converting the 3D point-cloud into a 2D image

proves beneficial. While the camera does produce 2D depth images, at the time of

implementation it was desirable to have image input that was consistent with the input
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used by the classical technique and was compatible with implemented navigation.

This is namely a top down representation of the area in front of the robot with that

displayed the height of each position relative to the ground.

With this in mind, a concept of a 2D heightmap image where each pixel is

encoded in the grayscale range of 0-255, was implemented. The starting pointcloud

of each recorded data container from data collection phase is taken, and processed

by a C++ program. This program utilizes the PCL library with various point-cloud

processing functions. Once the correct point-cloud is acquired, it undergoes a series

of transformations. An integral step is voxelization, where the continuous 3D space is

discretized into voxel units. This process, akin to the pixelation of images, serves dual

purposes: it significantly reduces the data’s density, thus improving processing speed,

and filters out potential noise, ensuring that our visualizations are both efficient and

accurate.

Further refinements of the data is done through a cropping function. This is

exclusively done to remove the parts of the point-cloud that do not provide any

relevant information, and only keep the primary region that can effect the system. At

the same time, it also reduces the dimensionality that would otherwise be put into a

deep learning network.

With the point-cloud now in an optimized state, the next step is translating its 3D

coordinates into a 2D plane. This is achieved by calculating the pixel’s x and y positions

of each point relative to the spatial dimensions of the point cloud, and then scale that

position according to the resolution of the desired heightmap. This is calculated with

the following formulas:

xpixel =

(
x − xmin

widthpc

)
× (widthimg − 1) (3.1)

ypixel =

(
y − ymin

heightpc

)
× (heightimg − 1) (3.2)

This proportional transformation inherently possesses the potential to merge

multiple 3D points into a singular 2D pixel, essentially averaging their properties.

This ability of downscaling the original data to any resolution is especially pivotal

in reduction of dimensionality, and in addressing empty voids in the original data, as

the merged values of neighboring points provide a plausible value for these missing
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regions.

The last step of the conversion is the calculation of each pixel’s value. In the

initial approach, pixel values were directly derived from the depth data present in the

raw point-cloud. This simplistic method, however, led to images with a pronounced

gradient. The bottom pixels, being closest to the robot, had values starting near zero,

while the pixels at the top of the image, representing points furthest from the robot, had

values nearing 255. Such a gradient-rich representation complicates the differentiation

between varied height values, not providing enough contrast in regions of interest.

This was perceived as a potential issue when considering these images as a dataset

for deep-learning, where distinct features could be critical for model accuracy and

generalization.

Instead, a height value is calculated similarly to how it is done by the classical tech-

nique, utilizing plane-fitting and a perpendicular point-to-plane distance calculation.

This also contributes additional consistency between the two techniques that are being

compared. Upon calculating the height, each value is mapped to a gray-scale gradient

that is proportional to a predefined range. With 0 (black color) representing the lowest

limit and 255 (white color) the highest limit, every elevation is now visually encoded

at each pixel. The resulting 2D heightmap can be viewed in figure 3.1.

(a) (b)

Figure 3.1: The same location viewed as: (a) RGB image (b) 2D heightmap

In conclusion, this program enables an orthographic projection of the original 3D

point-cloud coupled with value encoding that is derived from the original values.
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3.5 Classical terrain characterization technique

The classical terrain characterization techniques chosen for this thesis is called

Terrain characterizer (Nygaard et al., 2021). While it is originally developed for a

mammal-based quadruped robot, it can be adapted to be used in applications with

a wheeled mobile robot. The primary intended function of this framework is to aid a

morphologically adaptive quadrupet robot with the decision making when traversing

various terrain types such as concrete, sand and gravel.

Figure 3.2: Example of a roughness estimation by the DyRET terrain characterizer

The primary objective of this algorithm is to estimate the roughness of the terrain.

Input for this algorithm is a 3D representation of the ground ahead of the robot,

generated by a stereo depth camera in the form of a 3D point-cloud. Each point

within this point-cloud denotes its depth, which can alternatively be interpreted as the

distance from the camera lens. Subsequently, a plane-fitting algorithm is deployed on

this point-cloud, delivering a best fitting approximation for a ground plane based that

fits the collected data. The algorithm employs a technique known as Random Sample

Consensus (RANSAC). The resulting plane is determined by its coefficients that serve

as a reference against which the height of each point in the cloud is measured. The

subsequent measure of height is given by the equation:
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d =
|a · x + b · y + c · z + d|√

a2 + b2 + c2
(3.3)

Where:

• (x, y, z) are the coordinates of the point.

• a, b, c represent the coefficients of the plane’s normal.

• d is the plane’s offset from the origin.

The magnitude of this distance provides a direct measurement of how far the

point lies from the plane, regardless of whether it is above or below it. In its

application for the classical terrain characterization technique, the derived height value

is subsequently normalized into a color space that can be used as a visualization (fig.

3.3). While this approach might pose limitations when applied to non-flat terrains,

it offers a means to estimate the elevation of each point relative to the fitted plane,

whether above or below.

(a) (b)

Figure 3.3: The same location viewed as: (a) RGB image (b) Terrain characterizer point-

cloud

The processed point-cloud now represents points with height values instead of

depth. The concluding value for a specific area is derived as the mean of the squared

distances from the plane-fitted ground. This serves as a roughness estimation, with

greater values signifying increased irregularities in the ground’s surface. An example

of a representation of roughness can be seen in figure 3.2 above.
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Additionally, a maximum distance parameter from the flat surface is applied across

the data points. This distance functions as a filter to cut out every area from the

observed environment that is above the predefined maximum. Originally, the main

application of the filter was to cut out the robot’s legs from the observations. However,

this approach also doubles as a way of close proximity obstacle detection. By finding

the most optimal value for the maximum distance parameter, any undesirable gaps

and steps can be filtered out, and essentially perceived as areas to be avoided. In the

final configuration, this parameter was set as the radius of the robot’s wheels used in

this implementation. The reasoning for this value was based on the idea that if an

obstacle’s absolute height exceeds the wheel’s radius, the robot faces significant wheel

slip and often risks getting stuck.

For the purposes of this project, modifications were introduced to the original

process to better align with the specific use-case and the integrated navigation system.

While the core mechanism of calculating fitted planes and determining the height

of each point within a designated area remains intact, the application loop has been

tweaked.

The incoming pointcloud is divided into three equal vertical segments within the

predetermined field of view. This segmentation allows each section to undergo its own

plane fitting to reduce the amount of inaccuracy on a non-flat terrain. The resulting

pointcloud that contains the calculated values of each point is also cropped to better

represent the available operational area of the robot. The three sections for left, middle

and right of the resulting pointcloud and their values are used by the navigation to

decide which direction is the most optimal.

The original work also includes hardness detection (Nygaard et al., 2021). This

capability is realized by a couple of proprioceptive force sensors located in the legs of

the quadruped robot. Hardness detection on a wheeled robot would require a different

implementation, and therefore the hardness estimation of this software will not be used

during this thesis. This framework therefore only relies on visual-based exteroceptive

sensing.
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3.6 Deep-learning terrain characterization technique

To ensure a fair comparison between the two techniques employed in this project,

specific functionalities concerning the machine learning method were required. While

the input used by this method could be different based on its processing requirements,

it was necessary for the output to be compatible with the navigation system in use.

Therefore, the model was designed to: receive real-time input data of the terrain ahead

of the robot; process this data offline, and subsequently output the cost for each of the

three section used for navigation. The most important function of the model is that the

section of an image with the lowest cost signifies the most favorable terrain.

With this understanding, each data entry fed into the network comprises two

components: an image in the form of a 2D heightmap and an associated action

taken at the moment the image was captured (either left, middle, or right). The

anticipated output from this pairing is a value denoting the energy consumption per

meter traveled during the duration of the action taken. By integrating both an image

and a non-spatial variable, the network predicts the energy per distance used for each

potential action.

3.6.1 Proof of concept using synthetic data

Prior to delving into the intricacies of real-world data, a proof-of-concept phase was

undertaken, utilizing a synthetic dataset. One of the intentions behind this phase

implementation was to familiarize with the nuances of the technology, therefore

enhancing the level of preparedness when transitioning to real-world dataset. The

synthetic data was attempted to replicate the expected visuals of the real-world dataset

in order to facilitate the creation of a preliminary machine learning network.

While the resulting models were not overly specialized to train on this synthetic

data, it provided essential validation insight. Instead, this phase served as a testing

ground, assessing how effectively the chosen data structure could be used in a deep

learning network. Moreover, the experimentation shed light on potential requirements

for a successful terrain characterization model, particularly emphasizing dataset size,

image resolution, and other training specific parameters.

37



Synthetic dataset

Given that the real-world dataset would use 2D heightmap images encoded in

greyscale, we generated comparable imagery using various randomization and noise-

introduction techniques available in both OpenCV and numpy packages. Techniques

such as noise addition, Gaussian blur, displacements, and distortions were employed

to simulate pixel values that mirrored those anticipated in real-world data. For

instance, pixel values nearing 255 signified positive elevations from the ground level,

values approaching 0 indicated the opposite, and the majority of the image hovered

around middle of the spectrum.

The preliminary network proved adept at modeling the synthetic dataset effect-

ively, and exhibited the behaviour needed for the employed navigation. Notably, this

result was observed starting with a mere hundred images, with incremental enhance-

ments seen up to a dataset size of one thousand images. However, this was accom-

plished using a simplified replacement for the cost value of each pixel, yielding a

highly accurate terrain representation. Such accuracy would most likely not directly

carry over when applied to sensor data from the real world.

3.6.2 Initial model design: A conventional CNN approach

The first design of the deep-learning network leveraged a straightforward Convolu-

tional Neural Network (CNN) architecture, built with the assistance of PyTorch, a

popular deep learning framework. Initially, the model demonstrated proficiency in

modeling synthetic data, handling the similar but much more accurate dataset with

ease. However, challenges arose when the same architecture was subjected to a real-

world dataset. Despite rigorous efforts, the model consistently failed to extrapolate

meaningful learning outcome from this dataset.

The final version of the architecture of the initial model was based on four

convolutional layers. Each of these layers was constructed sequentially to facilitate

a convolution operation, followed by batch normalization layer. Subsequently, the

Rectified Linear Unit (ReLU) activation function was introduced to introduce non-

linearity and address potential vanishing gradient issues. Lastly, a max-pooling

layer was applied, aiming to downsample the input representation and reduce its
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dimensionality, thus making computations more efficient.

After these sequential convolutional stages, the forward propagation takes the

heightmap data and reshapes it to align with the architecture of the fully connected

layers, transitioning from a 2D spatial representation to a 1D vector format. Parallel

to this, the action input, representative of the driven direction associated with the

heightmap, is processed through its designated linear layer. The model then combines

these two distinct representations by concatenating them. This integrated data is

then passed through additional dense layers, driving the model towards its final

objective: predicting the energy consumption per traveled meter associated with a

specific heightmap-action combination.

Despite experimenting with varying numbers of these layers, the overall network

performance remained largely unchanged. Several strategies were explored to

optimize this architecture further. One such approach was the introduction of

data augmentation techniques. However, the application of augmentation failed to

bring any substantial improvement to the model’s performance. Parameter tuning

was predominantly guided by an iterative process of experimentation. Although

some configurations delivered marginally better outcomes than others, the persistent

issue was the model’s inability to train satisfactorily on real-world data. The

hypothesized factors that could cause the poor performance of the architecture were

high dimensionality and data quality.

The primary dataset exhibited a high dimensionality relative to the quantity of

available images. This discrepancy can lead to challenges in training, as a high-

dimensional input space requires an extensive and diverse dataset for effective

learning, and the lack of ability to generalize throughout the dataset. Furthermore,

another challenge was the quality of the data, specifically the presence of possibly

inaccurate values for the predicted variable. Such inconsistencies could be making

it harder for the model to discern patterns.

Given these challenges, a decision was made to overhaul the dataset. New

guidelines were set in place to curate a dataset that was dimensionally constrained,

while eliminating as many factors affecting the accuracy of the predicted variable.

These guidelines and the subsequent process are elaborated upon in section ??.

While the revised dataset resulted in enhanced model performance, the challenge of
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overfitting persisted, albeit appearing in later stages of the training epochs.

3.6.3 Exploring a ResNet based model: An experimental pivot

In the realm of deep learning, it is often stated that when one approach falters, there

are several others to be explored. Given the challenges faced with the traditional CNN

model, an experimental pivot was made towards a more modern, and often cited,

architecture in deep learning literature: the Residual Network or ResNet.

ResNet’s core innovation lies in its "residual blocks". These blocks allow the

network to learn residual functions with reference to the layer inputs, rather than

re-learning the entire transformations. This is achieved via "skip connections" or

"shortcuts" which bypass one or more layers. This mechanism assists in addressing the

vanishing gradient problem, a challenge often encountered in deep networks where

gradients tend to diminish in magnitude as they propagate through layers, leading to

ineffective training.

In the context of this specific project, a simplified version of ResNet was adopted.

The primary objective behind this transition was to get a network that would be able

to process the dataset at hand and provide a model that would enable navigation

of the robot. As this type of architecture is specialized for applications where deep

learning models normally have issues with overfitting, it seemed like a suitable option

to experiment with.

In our tailored ResNet network, the main idea is the incorporation of residual

blocks. Each of these blocks, encapsulated in the ResBlock class, comprises of layers

similar to those in the initial CNN based network design. Instead of solely relying on

the outputs of these layers, ResNet introduces a "shortcut" mechanism. This means

that the input to the block is added (or "shortcut") to the output of the block, resulting

in what is called as a residual connection.

Preliminary attempts with the ResNet-based model showcased a significant

improvement in training capabilities. The model acquired from this network was the

final model used for the final experiments.
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3.7 In-field consistency and management

Earlier, it was highlighted that field experiments would be conducted in a forest

area in Viken, Norway. This environment presents an unstructured terrain with a

wide selection of terrain features. However, in the initial stages, to ensure effective

prototyping and iterative testing, simpler and more controlled testing grounds were

employed. This approach ensures that specific functionalities of each system are

validated before advancing to more complex scenarios.

Once each function of the mobile robot is validated, all subsequent testing geared

towards collection of results was completed in one general testing area, while ensuring

each separate experiment was always carried out in its unique location. Areas that

were previously used for dataset collection were excluded to ensure unbiased results.

The experiment locations incorporated an array of naturally occurring obstacles of

diverse scales, from trees and rocks to branches and fallen vegetation. It is critical

that these obstacles offer both traversable and non-traversable challenges for the

mobile robot, simulating a realistic environment. In addition to obstacles, the testing

fields should consist of different ground types. Each ground type has their own set

of characteristics that determine its texture, hardness or roughness - such as grass,

gravel or fallen vegetation. The topography within the designated test boundaries

should present varied slope gradients, introducing different levels of risk for the robot.

Examples of valid locations for experiments are depicted in figure 3.4.
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Figure 3.4: Examples of valid locations for experiments

Finally, it is crucial to acknowledge the role of external conditions. Weather, for

instance, can significantly impact the technological components during experiments.

To maintain consistency and avoid unwanted influence from weather-specific factors,

all experiments were carried out outside the winter season and during periods without

rainfall.

To ensure consistent field experiments across different software variations, it

is crucial to manage the potential environmental changes caused by repeated

experiments located in the same location. Each subsequent experiment run, especially

if initiated from a common starting point, might alter the environment slightly, and

possibly introduce unwanted variation in the data. Tests were therefore carried out

by alternating between techniques with each successful run, in order to spread out the

effects of deterioration introduced by the robot.

The planned test procedures for each terrain characterization technique was to

perform several traversals from a chosen point A to a chosen point B. Each intended

experiment on a specific configuration was carried out multiple times to verify if

the results were statistically significant, with at least three tests being the minimum

requirement to be part of the results of this project. Results that varied greatly between

each test run on the same test configuration were not considered to derive conclusions

from.

Effectively addressing the research question based around its limitations proposed

in this thesis relies on making the most fair and representative comparison between

classical and machine learning terrain characterization techniques. Since there are

42



considerable differences in how both operate on the fundamental level, each type of

technique should be affected by the least amount of external variables possible. A

considerable difference between classical and machine learning ways of computing

any problem, is that the former is developed based on human understanding of

the problem. However, deep-learning, while developed and often also inspired by

processes that are common to humans too, fundamentally solves problems in its own

understanding. While the underlying principles of deep-learning based solutions are

often unexpected and abstract to humans, the final outcomes provide an insight that

can inspire further implementations.

To ensure a balanced comparison between the classical and machine learning

techniques, biases inherent to each approach should not influence the other. Therefore,

the testing of machine learning techniques should be conducted only after completing

classical technique testing, to make sure the latter is only based on the operator’s

initial bias. Similarly, data intended for use in machine learning was collected prior

to any experiments, in order to not introduce new biases into manual data collection

from seeing autonomous solutions. This order of procedures for data collection and

experimentation also contributes to form the most generic machine learning solution

possible. However, it is important to note that data collected by manual control will

not be completely free of bias, as there is certain amount of bias inherently with any

human operator. Essentially, the main consideration with regards to data collection is

to implement classical solutions and machine learning solutions that are not inspired

by each other.

3.8 Ethical issues

Since this thesis also describes the analysis of the datasets accumulated throughout the

outlined methodology, as well as present the final results, it is important to take a look

at any ethical considerations.

Stewart (2011) presents discussion on a number of potential ethical issues within

the process of scientific research. First and foremost, the validity of research that is

based on first-party data and analysis is dependant on their quality and honesty. In

the context of this thesis, the operator that is manually acquiring the data necessary
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for machine learning purposes, must be aware of the biases they can introduce into

the data. This is an important factor that needs to be minimized wherever possible,

such that the research questions of this thesis can be answered based on the most

representative foundation.

As the person analyzing the datasets and conducting the research will also form

a certain hypothesis before the field experiments are conducted, it is paramount to

take into account that the actual results could differ from the hypothesis. Therefore,

the author should not focus on steering the experiment in such a way that the datasets

would give the same results as initially hypothesized. Being aware of this is important,

since unexpected results with appropriate analysis and discussion are still valuable to

the research community.

In a similar fashion, during the search for the real-world testing fields to conduct

experiments on, it is important to not pick areas that would compose the absolute best

case scenarios. This could potentially not represent the real-world performance, as it

would be closer to a controlled experiment. To reiterate, one of the main goals of this

thesis is to challenge the terrain characterization technology on the same scale as in any

arbitrary robotic mission. Therefore, the chosen terrain should be chosen to represent

a wide variety of features that can be reasonably expected to test and assess the main

factors of terrain characterization techniques.
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Chapter 4

Experiments

The subsequent chapter delves into a detailed presentation of the experimental setup,

offering a comprehensive overview of both the hardware and software components

utilized. Below is also an overview over the experiments that will be carried out. For

each of these experiments, we’ll outline their primary objectives, anticipated outcomes,

and the specific steps or actions that constitute them.

4.1 Experimental setup

The platform used for the experiments is a wheeled mobile robot, specifically the

AgileX Scout Mini rover (fig. 4.1). This model is categorized as a high-speed, all-

terrain four wheel non-holonomic mobile robot. It employs a differential drive and an

independent suspension, utilizing all four wheels to perform steering and rotations in

place.
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Figure 4.1: The robotic platform with installed hardware

The main consideration in the choice of this platform is its potential capability in

an off-road terrain. Optimization of the performance tied to the hardware provides the

most fair and consistent comparison only between the software used during each test

run.

The sensor suite mounted on the robot will consist of a stereo depth camera Intel

RealSense D435, an IMU and a GPS unit (fig. 4.2). A combination of these sensors

is used to provide capabilities of perception in the local region in front of the robot,

capability for navigation towards an end goal, and a way of measuring the forces

applied on the entire system.

(a) (b)

Figure 4.2: (a) = Intel RealSense D435, (b) = XSens IMU+GPS module
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The stereo depth camera has a relatively narrow field of view, but for the

application needed in this project, it will provide a detailed high resolution data to

sense finer variations of terrain in the robot’s close proximity and trajectory.

For any capabilities at a longer range, a LIDAR sensor would need to be considered.

It often has the wide field of view and distance needed to provide meaningful

information at a more global scale, such as detecting any obstacles that should

be accounted for when planning a global path. The relative difference between

capabilities of the two types of sensors is illustrated in figure 4.3.

Figure 4.3: Fields of view of the two visual sensors (not to scale)

An IMU module delivers orientation and acceleration data. The orientation aids

navigation, while acceleration quantifies the terrain’s impact during traversal. The

robot also features sensors that monitor internal operational states, including wheel

odometry, motor speed, current, and voltage. A GPS unit is also present which reports

the physical location of the system expressed in coordinates. The specific coordinate

system used by this particular GPS is ’Local tangent plane coordinates’.

The entire system is powered by the on-board battery with nominal voltage starting

at 29 volts. As this voltage drops off with reduced charge, a DC to DC regulator is
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installed to provide a steady 12 volt output for installed computer.

4.1.1 Software

All the necessary terrain characterization software for this project will be integrated

using ROS Noetic. The computer that is present on the robot that is responsible for

data processing, and executing the autonomous systems, is an Intel NUC running on

Ubuntu 20.04 operating system.

The developed of the mobile robot provides a ROS package, which facilitates

communication via the CAN to USB interface and offers ROS topics and messages

for interfacing with the hardware’s data outputs. While the core package remained

the same, some customizations were made, such as the inclusion of custom messages

tailored for navigation. The developer’s original package code is accessible on their

GitHub page. Additionally, the platform’s sensor hardware utilizes their respective

drivers and ROS packages provided by their manufacturers.

In the course of this project, several additional Python and C++ packages were

leveraged to cater to different elements of our implementation. Below is a rundown of

the most notable packages:

• PCL

• OpenCV2

• PyTorch

• Numpy

• Geographiclib

The final source code that was used to carry out experiments, train a model and to

process all required data can be accessed on a public github repository 1. This includes

each C++ program and python scripts, as well as modified version of the original code

that was adapted to implement the classical terrain characterization technique.

1https://github.com/erikskul/acit5930_23
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4.2 In-field experiments

These following experiments were conducted with the main function of exploring the

system’s capabilities and quantifiable performance in various scenarios. A secondary

goal was to generate data that offers a comprehensive view across all test conditions.

Two primary criteria will dictate location selection for the experiments. The first

main category of experiments will be aimed to show the capabilities of each system

in specific scenarios. The other category of tests would be intended to illustrate the

overall performance over a longer distance, which will be more comprehensive in

nature.

Experiment A

First set of experiments is intended to be a brief controlled experiment, done over two

different types of terrain, namely gravel and grass. This experiment is not executed

by either of the autonomous systems, but instead is only done by a human operator

in a straight line with no additional input. To keep as many variables consistent,

each instance of this experiment was conducted on the same incline, exclusively

downhill to minimize wheel slip, and across an identical distance. The primary goal

for this experiment is to validate if the differing terrain types lead to varied energy

consumptions. The expected outcome from the data gathered from these experiments

should show that traversing the same distance on the gravel terrain is more energy

efficient than compared to traversing on grass.

Experiment B

The second category of experiments focuses on the robot’s capability to navigate

through a terrain transition, specifically from gravel to an unstructured forest terrain.

The robot starts from a point A placed on a flat gravel trail, and is required to

correctly identify the most suitable entry point through the terrain transition situated

perpendicular to the transition’s line. Upon entering, the system must navigate

through the terrain’s variations to approach point B. Finally, the point B is placed

past a similar terrain transition as at the start of the experiment. The primary aim

of this experiment is to evaluate if the if the navigation system is able to steer the robot
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towards the end position while still making reasonable decisions regarding the local

terrain.

Experiment C

The third set of experiments was aimed to confirm if the system is able to follow along

a contrasting terrain transition (fig. 4.4). The point A is placed on a flat gravel trail,

while point B is placed in an unstructured terrain, leading to an optimal path that is

more or less parallel to the transition line. Ideally, the system should prioritize the

gravel trail — the more favorable terrain — only crossing into the unstructured terrain

as necessary to reach point B. A couple of variations of this scenario will be undertaken,

with various starting orientations and transition line curvatures to provide varying

difficulty levels. This includes a starting orientation that is parallel to the transition

line, a starting orientation that is perpendicular to the transition line, a transition

line that is straight, and a transition line that curves. The last mentioned variation

provides a specific scenario where the system needs to turn towards the point B, but

simultaneously, the more desirable gravel trail expands to the opposite direction.

(a) (b)

Figure 4.4: Examples of Experiment C. Red line = transition line between two terrain

types
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Experiment D

Fourth category of experiments is a typical scenario that can be often encountered in a

forest terrain. It is executed in an area with thick vegetation and unstructured terrain,

with a clear trail going through that environment. Initiated at the trail’s start with point

A, and concluding at a predetermined distance on the same trail with point B. The

system is expected to follow the clearly visible trail, avoiding the challenging terrain

on either side of it.

Experiment E

Fifth category of experiments is intended to test each system in areas with higher

amount of obstacles of varying sizes. Both point A and point B are placed inside

of areas with only unstructured forest terrain. The main objective behind these

experiments is to see how each system identifies and reacts to varying sizes of

obstacles, and if they can successfully navigate through a larger stretch of solely

unstructured terrain. This scenario also provides the best opportunity to reveal the

differences in the recorded roughness by each system, quantifying their ability to adapt

to terrain variations.

Experiment F

The final category of experiments are long duration tests that aim to give the closest

approximation of a real-world use case for a robotic system. Compared to the other

experiments, the distance between point A and point B is intended to be considerably

extended. The main goal behind these experiments is to gather data that holds

more significance due to the increased duration, but also to see if and how the two

autonomous systems are able to reach the point B, without focusing on a specific terrain

scenario.
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Chapter 5

Results and discussion

In this chapter, the gathered empirical findings from in-field experiments will attempt

to answer the research question of how a deep learning-based terrain characterization

approach compares to a classical analytical one when employed in the real-world.

The data consisting of energy consumption and IMU based metrics will be presented,

followed by relevant discussions and observations. Each navigational mode- whether

human-operated, classical technique (TC system) or deep-learning technique (ML

system), will undergo an individual assessment, analyzing their capabilities and

performance. Where relevant, comparisons will be drawn between them. Through

a combination of quantitative metrics and qualitative insights, this chapter seeks to

discover the capabilities of the systems in real-world scenarios.

5.1 Structure of results

The collected data offers a quantitative overview over energy consumption and the

ability to asses terrain associated with each mode of navigation used throughout all

experiments. While the primary focus of our analysis is the comparison between the

two autonomous systems, we also consider results from tests operated by humans to

provide a context as it’s a common way of operating robotic systems.

Each technique will be evaluated by a number of criteria that are related to the

mobile robot’s ability to traverse through an environment. Each criteria represents a

different capability that might be desirable in any real-world use case, namely: total

time used to finish a traversal, total energy consumption of a traversal, total energy
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consumption per distance travelled, and a measure of roughness that would indicate

the difficulty of the terrain taken throughout a traversal. The measure of roughness in

this context is the summed average of IMU data’s standard deviation, specifically the

pitch and roll components (lateral movements in the x and y directions). This means

that the roughness metric would increase when the robot takes a path through a more

varied terrain, as more vibrations and inclines are effecting the system throughout a

run.

To facilitate the analysis of gathered results, we’ve categorized the data into two

primary structures based on the terrains most frequently encountered throughout

the testing phase. Every valid experiment conducted, irrespective of its duration

or distance, finds representation in these categories. The first category, labeled as

"Mixed terrain," includes test runs where the systems predominantly navigated a

gravel trail, but also encountered sections of unstructured forest terrain. In contrast,

the "Forest" category is more exclusive. It comprises runs that were executed solely

within unstructured forest terrain.

In the secondary analysis, attention shifts to two specific test runs, both character-

ized by extended distances and durations compare to the other tests. The first of these

encompasses a long-distance run set exclusively within a unstructured forest terrain.

The second test presents a mixed terrain: it begins on a gravel trail while the end point

is situated in a unstructured forest terrain. Here the main caveat is that the gravel trail

could be followed for various amount of time, and still be a viable route in order to

reach the end point.

5.2 Energy efficiency

Energy values, which represent the total energy expended from the starting point

A to the end point B of a specific experiment, are presented in Joules. Given the

variability in test durations, distances traversed, and the inherent characteristics of

each terrain, the energy metric was normalized. This normalization ensures that the

data can be analyzed in a comparable manner, allowing for more accurate insights into

the efficiency of each mode across different terrains.

54



Figure 5.1: Normalized total energy consumption (J) per terrain type

The figure 5.1 of total energy consumption across the two terrain categories show a

clear trend: the human operator consistently expends the least energy in the majority

of test runs. Both of the autonomous systems tend to consume the same amount of

energy on each terrain type.

5.2.1 Effects of steering behaviour

However, this result is not solely achieved by the human operator navigating the

terrain more efficiently compared to the autonomous systems. The heatmap in figure

5.2 depicting accumulated yaw direction changes demonstrate that human operators

make limited amount of steering adjustments compared to the autonomous systems.

Given the robot’s differential drive, any form of lateral movement might result in

increased energy consumption, which can be attributed to the increased wheel slip

and friction, which happen when making turning adjustments, as opposed to moving

in a straight trajectory.
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Figure 5.2: Accumulated yaw change per terrain type (degrees)

The human’s minimalistic approach to steering is not necessarily a conscious

strategy. Rather, it stems from the limited ability to access terrain down to more subtle

terrain characteristics within it in real-time. Comparing the autonomous systems

paints a similar picture. The ML-based system tends to make lateral adjustments more

often than TC system, which, in turn, increases its energy consumption for the same

test runs. Drawing from these observations, one can infer that energy consumption is

to a large degree connected with the navigation habits exhibited by each mode.

When observing the human operator’s inclination to mainly move straight without

much adjustment to the terrain, an important question is if this seemingly linear

approach would be more beneficial for autonomous systems as well. Or on the other

hand, is it the autonomous systems that seem too proactive or even excessive in their

steering adjustments, thereby leading to higher energy consumption? To provide more

context to these nuances, a series of shorter, controlled tests were conducted that are in

detail described in section 4.2.
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Figure 5.3: Total energy consumption (J) per terrain type in a controlled experiment

number 1

The core objective of this experiment was to gauge the robot’s ability to proprio-

ceptively measure the variations between two terrains with distinct ground textures.

Anticipating the outcomes based on the nature of the terrains, it was hypothesized that

the gravel trail would yield a more energy-efficient traverse. The results from these

tests in figure 5.3 confirm this hypothesis. The robot’s traversal on the gravel trail in-

deed proved to be more energy-conserving than on the grassy terrain. Based on these

results, it can be inferred that there are meaningful navigation decisions to be made

when traversing non-linear terrain. However, the exact point of diminishing returns

of improved energy efficiency when applying more steering effort is not known.

A second contextual experiment was done on a flat gravel trail, where one half

of the driven stretch has negative obstacles the entire way, while the other half is

completely flat. The human operator only went straight through the part with more

undesirable terrain, while the two autonomous systems were sent off from the same

starting point.The aim was twofold- not only to see if the autonomous systems would

steer off towards the flatter part as intended, but more importantly, to see how the

energy consumption changes while increasing steering effort towards a better terrain

versus driving straight through a worse terrain profile.
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Figure 5.4: Total energy consumption (J) in a controlled experiment #2

Figure 5.5: Accumulated yaw change per terrain type (degrees) in a controlled

experiment #2

As can be seen in figure 5.4, TC system maintains similar energy efficiency per

distance unit with a higher total yaw input (fig. 5.5) during the test’s duration

compared to the human operator. At first look, the energy efficiency of the TC system

is matching the human operator, and does not bring any meaningful improvement,

however it’s important to note that this particular implementation tends to apply

steering when it is not completely necessary. If a similar system could manage to

handle very uniform areas such as in this example more consistently, it would follow

that the energy efficiency would also improve further. Overall, this finding is a good

indication that an autonomous system with local terrain awareness can make better

navigational decisions when applicable by using more costly maneuvers and benefit
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from them.

The ML system on the other hand, while it did avoid the rough terrain, it also used

excessive steering effort due the the implementation’s insufficient capabilities in an

exclusively flat terrain. This leads to higher energy consumption then what could be

possible without this behaviour present, and therefore does not show the most realistic

representation. This kind of behaviour was present during other traversals happening

on similar gravel terrain, and is discussed in the next section.

The core insight from this experiment is the potential of an autonomous ter-

rain characterization system, be it classical or machine-learning-based, to make nav-

igational decisions resulting in reduced energy consumption compared to systems

without such capabilities. Yet, it’s imperative that the system is robust, equipped to

handle scenarios that may cause abnormal steering. Specifically in this case, the TC

system handled the scenario better compared to the ML system.

5.2.2 Energy consumption in long duration experiments (Experiment

F)

Starting with the long duration test number one situated in a forest terrain (fig. 5.6), we

can see the same trends as beforehand. The human operator uses the least amount of

energy with the least amount of total yaw applied during the whole test duration (fig.

5.7). The two autonomous systems achieve similar results in this test. The ML system

achieves similar results compared to the TC system. In this case, the total accumulated

yaw for both systems is also similar.
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Figure 5.6: Normalized total energy consumption (J) per terrain type in long duration

experiments

Figure 5.7: Accumulated yaw change per terrain type (degrees) in long duration

experiments

Long duration run number two reveals one essential implication of using only

local perception for the autonomous systems. The end point of this particular test

was placed in a unstructured forest terrain, while the common starting point was on a

gravel trail. However, it was a viable possibility to close the distance towards the end

point by taking a longer overall path that mostly stays on the gravel trail.
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Figure 5.8: Approximation of paths taken in long duration run #2 (mixed terrain),

based on RGB images. Red = human, Blue = TC system, Black = ML system

This was indeed executed this way by the human operator, as at first glance

that was the most natural way to approach the scenario. The autonomous systems,

however, constrained by their limited local perception, diverged from the gravel

terrain sooner. As depicted in figure 5.6, this results in an overall higher amount

of energy consumed for the human operator, but simultaneously having a lower

energy per distance compared to the autonomous systems. While this result is

contradicting the previous findings, it is an example of where global based decisions

have important navigational implications. Such findings indicate the potential

advantages of combining local terrain awareness with global navigational insights.

While the two autonomous systems solved this problem similarly, each system

transitioned from gravel to forest terrain at different points. This might be attributed
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either to the navigation system in use, due to how the GPS component is implemented.

However, as will be discussed in a separate section, the aforementioned discrepancy

could also be the result of different object-detection behaviours of each system. The

TC system completed the transition in an area with minor obstacles, while the ML

system chose to navigate through a set of larger obstacles which could explain the

higher energy usage by the ML system due to more navigational effort required.

5.2.3 Roughness

In evaluating the performance of the various navigation strategies, it’s not just energy

consumption that matters. We must consider other metrics that gauge the effectiveness

of each system, especially in areas where the benefits may not be immediately apparent

in terms of energy. One crucial measure in this context is the ability to navigate a

robot towards safer terrains, which is fundamental to the overarching objectives of

this technology. The ’roughness’ metric offers an insight into this aspect. Defined as

the summed average of standard deviation of pitch and roll (representing the robot’s

lateral movements in x and y directions), it gives us a quantifiable measurement of

how smoothly the robot traverses varied terrains over the span of a test run.

Figure 5.9: Roughness per terrain type

As seen in the figure 5.9, results gathered by the human operator across the two
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terrain types has consistently higher roughness than that of the two autonomous

systems. As previously shown, human operator also inputs the least amount of

yaw adjustments (fig. 5.2), meaning the robot is sent straight ahead through terrain

more often. The TC system exhibits the lowest roughness levels, which confirms

observations of its capability at detecting and beneficially navigating minor terrain

variances. Meanwhile, the ML system is not as capable as the TC system due to the

capabilities of this system and how it seems to operate in this implementation, which

is described more in detail in the next section.

Overall, both autonomous systems achieve lower amounts of roughness that is

subjected upon the robot, with the classical technique performing better compared to

machine learning. This is an accomplishment in one of the two areas that would make

autonomous terrain characterization a viable solution for remote robotic applications

in the real world. This however depends on the what each application requires.

Achieving this represents a milestone in one of the key areas that make terrain

characterization a feasible solution for remote robotic applications in the real-world.

Nevertheless, the applicability depends on the specific requirements of each individual

application, where either energy consumption or lower roughness is preferred.

5.2.4 Roughness in long duration experiments (Experiment F)

In evaluating the long-duration tests from the perspective of roughness, similar patters

can be observed due to the use of local perception (fig. 5.10). On a longer duration run

exclusively in unstructured forest terrain, the roughness achieved by a human operator

is higher compared to both autonomous systems. The roughness achieved by an ML

system is slightly higher compared to the TC system.

In the same manner as previously, the results for the second long duration on

a mixed terrain run are somewhat counter-intuitive. It could be expected that the

autonomous systems would achieve lower roughness as it generally does, but in this

case it does not, as the human operator took a much longer path along the gravel trail,

which naturally results in lower roughness measurements for that particular run. This

kind of a solution to this problem again highlights the needs for a global perspective

added to the functionalities of a local terrain perception.
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Figure 5.10: Roughness per terrain type in long duration experiments

From these findings, a broader conclusion can be drawn: in robotic navigation,

there’s an intricate balance between energy consumption and experienced roughness.

This balance might be adjusted either way for a potential remote robotic mission,

depending on a number of factors. For instance, in a robotic mission, considerations

such as energy reserves, the robot’s traversal capabilities, and the comprehensive

understanding of the environment will dictate whether the focus should lean towards

energy efficiency or smoother traversal of the terrain.

5.3 Traversal from point A to B

Several tests of shorter durations and distances were done in order to quantify and

detect the behaviour and capabilities of the autonomous systems when put in edge case

scenarios, as well as finding qualitative comparisons between the two autonomous

systems. The performed experiments were aimed at finding out if the systems are

capable of handling certain situations, as well as which areas of the tested field

proved to be the most challenging. All of the experiments used to come the following

conclusions were executed according to their descriptions in section 4.2.

The first tests of Experiment B were intended to show how transitions between

contrasting terrains are handled. Both autonomous systems managed go traverse from
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point A to point B successfully. Both have made the transitions between the two types

of terrain in a reasonable place. There were not any noticeable differences between the

TC and ML systems in this specific scenario.

During Experiment C, where the systems were tasked to track and eventually cross

a terrain transition, both managed to reach the point B, identifying feasible crossing

points. However, their navigation differed notably at a curving terrain transition

alongside a gravel trail. The ML system adhered close to the transition line, while

the TC system exhibited more oscillatory movement, frequently deviating between the

transition and an excessive heading offset away from point B.

One test of Experiment D was done to test a typical terrain scenario that can often

be encountered in a forest environment. The aim was to follow a clearly discernible

trail through thick vegetation as long as possible without steering off of the trail. Both

TC and ML systems were able to reach the the same final distance away from point

A. The TC system performed better and kept within the boundaries more steadily,

and never hitting any of the nearby non-desirable terrain. In contrast, ML displayed a

noticeable drift towards the right side of the trail, indicative of its heavy dependence on

discernible and contrasting edges in its input images. This inherent bias not only made

its navigation less precise but also frequently steer the robot into more challenging

terrain. Such behaviors highlight the ML system’s challenges when presented with

paths that require subtle and nuanced navigation decisions. While it possesses the

capacity to recognize and maneuver around major obstacles, it appears to struggle in

scenarios where maintaining a delicate course is paramount.

The test runs of Experiment E were executed only in an unstructured forest terrain,

with both point A and point B situated in such a terrain. The main goal is to gather data

from this specific terrain, but also to observe how the autonomous systems perform

with regards to navigating around unstructured terrain. Similarly in these tests, both

systems managed to reach the end point without getting stuck. Biggest differences

between TC and ML systems was that they reacted to various obstacles differently,

which is documented in more detail in the next subsection.
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5.3.1 Obstacle avoidance and terrain navigation

There were different capabilities and behaviours observed with regards to obstacle

avoidance and maneuvering through the terrain variations encountered in the

traversed areas. When compared to a human operator, that had a wider and longer

(more global) vision of the surroundings, the two implemented systems operated

differently. Instead, the automated systems are limited to a narrow field of view, and

do not have sufficient vision range to be able to make decisions ahead of time. These

are the concise observations with regards to the topic at hand:

1. ML system and high contrast environments:

• Nature of input: The ML system’s reliance on sharp contrast, especially in

areas with large height variations, proved beneficial in some contexts. The

heightened contrast in the input heightmap, likely a consequence of the

dataset’s adjusted edge detection, ensures effective navigation in terrains

with sharp-edged obstacles, such as trees and highly contrasting terrain

transitions.

• Strengths: In areas of an unstructured forest terrain which feature pro-

nounced height variations due to trees, rocks and terrain transitions, this ap-

proach capitalizes on the model’s trained inclination to detect sharp edges.

• Weaknesses: However, in more homogenous environments like flat gravel

terrains, this edge-detection prowess becomes a liability. The absence of

significant variation and pronounced edges, combined with noisy sensor

data and a navigation algorithm not tailored to handle such noise, results in

erratic steering adjustments. This is most evident in the yaw accumulation

heatmap.

2. TC system and real-time calculations:

• Nature of input: Operating on real-time raw data, the TC system’s

proficiency lies in distinguishing minor terrain variations, offering a more

granular and nuanced navigational action.

• Strengths: Not only can the TC discern when a favorable path is present, but

its real advantage is in situations where optimal paths are not immediately
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evident to human observers.

• Weaknesses: However, while the TC system seems well-equipped to handle

the subtleties of varying terrains, it might be prone to over-analysis in

certain scenarios, leading to possible inefficiencies or over-caution.

5.3.2 Exteroception vs. proprioception

Throughout various runs across different scenarios, distinct conclusions can be

drawn regarding the two sensory approaches for robotic perception in terrain

characterization: exteroceptive and proprioceptive. The implication of each approach

are extensively debated in prior terrain characterization research. This is due to

the different applicability of both approaches which might be more suitable in

different situations. In applications that are highly susceptible to wheel slip, such

as interplanetary robotic applications, proprioceptive techniques often prove more

reliable given their direct sensor-to-terrain interaction. On the other hand, research

has often employed the usage of exteroceptive techniques in similar application as in

this project, or in a widely used conventional in-door obstacle avoidance.

In this project, the TC system is purely exteroceptive. While the ML system is

exteroceptive during operation, it is based on proprioceptive measurements during

the training procedures. The results indicate that a purely exteroceptive approach

excels in contexts where terrain information is largely available in advance through the

available means. The decision making based on high resolution raw vision data has

the capabilities of discerning the minor variations in terrain in a local vicinity, which

allows a robot to act upon it. The shortcomings surface in situations when a terrain

cannot be characterized by vision only, which can lead to navigational actions that are

suboptimal.

On the other hand, it can be argued that a technique that combines both a

proprioceptive and exteroceptive approach into a one unified terrain characterization

system, could be able to make more nuanced decisions. Such a system would not only

rely on real-time visual data, but would also draw correlations from prior physical

interactions with similar terrain characteristics. This is the capability a machine

learning based system has over a classical one, but requires much more complex

implementation mainly driven by a robust and accurately measured datasets.
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5.4 Limitations

In the course of this research, several key limitations were identified. Understanding

these limitations is essential as they offer direction for future refinements and research

avenues in the realm of autonomous terrain navigation.

The usage of low-cost, widely accessible sensors, might have confined the quality

and breadth of terrain data available that was captured. This choice, while practical,

potentially overlooks nuances that more sophisticated sensors could capture. These

limitation became evident with regards to the quality of the collected dataset that was

used to train the machine learning model. While the network produced a functional

model, the employed dataset was limited in volume compared to what turned out to

necessitate a more robust solution.

Another significant limitation was the short-term decision-making approach

adopted by both classical and machine learning techniques. Relying heavily on

immediate visual cues could at times overshadow the benefits of a broader, more

holistic terrain perspective. While it is a direct consequence of the sensors being used,

the navigation system limits the capabilities of how the system is able to act upon

gained terrain information. This limitation mainly stems from the simplicity of the

navigation system and usage of constant angular and linear velocity for mobility.

Lastly, the specific design of our experiments raises questions about the universality

of our findings. Given the diversity of conditions and terrains a robotic system might

face, it’s important to critique how applicable the results are in a more general use case.

5.5 Future Work

Following the identified limitations of this study, this thesis outlines avenues for future

research:

Firstly, refining and expanding the dataset is paramount. As we discovered, the

need for a more expansive dataset is crucial in development of a more robust machine

learning based technique for terrain characterization. The dataset must cover the vast

dimensionality of an environment such as the one covered during the experimentation

phase, while providing enough resolution in both the visual and numerical data such

that a machine learning model can effectively discern both the subtle and pronounced
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terrain features.

The development of a more sophisticated navigation system is also needed. A

system that can adjust its angular and linear velocity in response to terrain demands

can offer a more effective navigational approach. This capability coupled with a

global vision overview would reduce system’s dependence on short-term navigational

decisions that are based solely on the immediate visual cues.

By addressing these areas, we can better position autonomous robot navigation

for success in unpredictable and unstructured environments in a wider range of

applications.

69



70



Chapter 6

Conclusion

In concluding this research, the project sought to explore how a deep-learning-based

terrain characterization measures up against a classical analytical approach when

integrated into an autonomous system designed for navigation in an unstructured

environment. While the system’s physical abilities could handle these conditions,

its navigational system needs the required function to the successfully operate in a

remote setting. The overarching ambition of this technology is to eventually achieve

full autonomy in in environments that have predominantly been off-limits to non-

manually operated robots. This has countless applications in areas where a human’s

presence is in danger and has to be accessed by a machine. This project, therefore, set

out to to explore what’s needed to develop a system that’s capable of achieving such

future.

This project included all the necessary aspects that are needed in transitioning a

technological concept into a tangible solution. Starting with a robotic platform, it

was equipped with both the essential hardware and software, enabling it to utilize

two terrain characterization techniques using a common navigation system. The

implemented sensor suite consists of widely accessible sensors. Leveraging a stereo

camera, IMU, GPS module, and wheel odometers, two early prototypes of the studied

techniques were implemented. These were then rigorously tested through in-field

experiments specifically designed to provide more information about the project’s

research question.

A total of seven main categories of experiments were outlined specifically to find

an answer to how the implemented techniques perform in the real-world. These
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experiments shed light on specific behaviors, identified constraints, and provided a

basis for a comparative analysis of the two approaches. The main observation was

that the autonomous systems tended to consume more energy than compared to a

human operator, primarily due to the increased navigational efforts executed by the

systems. However, it could be inferred from the results that there is a balance to

be found between an over-cautious navigation and energy efficient maneuvers that

provides the most optimal solution to terrain characterization.

While the energy consumption was overall higher than what was achieved by a

human, the autonomous systems showed an ability to optimize the second important

function of terrain characterization. Both systems consistently recorded lower measure

of experienced roughness, indicating that the systems were able to navigate terrain in a

safer manner. This functionality, albeit more energy-intensive, underlines the priority

of minimizing risks in more hazardous unstructured environments.

Additionally, both implemented systems showcased distinct ways of interpreting

obstacles and terrain features, stemming from their foundational processes. The

classical technique excelled in its sensitivity to minor terrain variations, benefiting from

its reliance on high-resolution visual data. In contrast, the machine learning-based

approach leaned heavily on recognizing pronounced features within its input imagery,

likely a reflection of its training, where emphasis was placed to highlight excessive

terrain transitions. Striking a balance between these could lead to a comprehensive

system adept at discerning both minor and major terrain features simultaneously.

The complexity of unstructured terrain introduces a multitude of variables and

unique elements that pose learning challenges. The process of dataset collection

carried out during this project, essential for training the machine learning model,

culminated in several valuable outcomes. It became apparent that training of a

deep-learning network requires a much larger dataset than previously anticipated, to

accomplish a comprehensive model of a real-world environment. This accentuates

the need for an datasets with terrain imagery combined with highly accurate

proprioceptive measurements when applicable.

The adaptability of a classical method such as the TC system is advantageous in

the short term context, as it can easily be employed in a brand new environment and

could provide satisfactory results. The shortcoming of such a system comes from
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the fact that further expansion or improvements become steadily more complex and

challenging to implement, and might only provide diminishing improvements. In

contrast, a machine learning technique is more complex to get going, but with more

effort spent on data collection, in the long term it has the potential to improve past

the limits of a classical approach. Even with a limited dataset, leveraging relatively

straightforward neural network and inadequate sensors, we were able to show positive

results of a machine learning based system that were not far behind the capabilities of

a classical approach. Although the outcomes were not always optimal when compared

to a conventional remote operation of robotic systems, both classical and machine

learning techniques managed to navigate the robot successfully from point A to point

B. This current iteration is not universally adaptable in it’s current stage however, and

extensive refinements are necessary for a broader use case.

The conclusions drawn from this research underscore that the journey towards

perfecting terrain characterization for robotic applications remains ongoing. It became

apparent that both classical and machine learning techniques could significantly

benefit in a number of areas. For instance, a wider global perspective of the

surroundings would aid in making decisions that are more optimal over a longer term.

However, some of these challenges could be attributed to the rudimentary navigation

system that was used in this implementation. Additionally, the previously mentioned

dataset collection challenges remain as the main hurdle towards a complete solution

that is based on any machine learning-based technique.

In the rapidly evolving field of robotic systems and autonomous navigation, the

exploration of both classical and machine learning-based terrain characterization

approaches opens new horizons for safe and efficient mobility in uncharted terrains.

This research serves as a foundational study, highlighting the strengths and limitations

of both methodologies in real-world scenarios. The journey towards perfecting this

concept continues, with the hope that the findings of this thesis light the path for future

research in the realm of autonomous terrain navigation.
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